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/ ABSTRACT
o The Conley index is an extremely useful tool for the study of structural
properties of isolated invariant sets such as critical points or periodic
solutions in local flows. The continuation theorem shows that the properties
of the flow which are descrihed by the Conley index are among those which are
invariant under perturbations. This is a fact of great interest in many
applications.

Most of the results in the present paper are not new. The object of this
work is to give a self-contained presentation of most of the basic concepts
and theorems in the index theory for flows which can otherwise only be found
in a number of different papers. Moreover, we have simplified a number of the

complicated proofs. .
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CONNECTED SIMPLE SYSTEMS AND THE CONLEY INDEX OF ISOLATED INVARIANT SETS

Dietmar Salamon -
-®

1. INTRODUCTION

Some dynamical processes in physics, chemistry and biology can he described by

differential equations depending on parameters which cannot be determined with an
arbitrary degree of precision. For the study of such systems it is important to determine ;ﬁ
those structural properties which remain invariant under (small) perturbations. Many of

these properties can be described in terms of an index theory which has been developed by

CONLEY [3]. Although the basic ideas have been developed over many years, complete proofs
for some of the central thecrems are only recently available (see e.g. KURLAND [6], (7],
[8], CONLEY-ZEHNDER [4], FRANZOSA [5)).

The object of this paper is to give a coherent presentation of the basic results in
the index theory of isolated invariant sets. Most of the theorems in this paper are
known, however the available proofs are widely spread in the literature and much more
complicated.

In two preliminary sections we collect some elementary notions and results from
homotopy theory (section 2) and from the general theory of flows on topological spaces
(section 3), In the main part of this paper we introduce the fundamental concepts in the
index theory for isolated invariant sets (section 4), prove the existence and uniqueness
of a long coexact sequence associated with an attractor-repeller pair (section 5) and
establish the basic continuation results for the Conley index (section 6).

The starting point for this work was an essential simplification of the proof that
any two index pairs for a given isolated invariant set are homotopically equivalent after

collapsing the exit set (Lemma 4.7). This result allows a very simple proof of the fact

Sponsored by the United States Army under Contract No. NDAARG29-80-C-0041. This material is
based upon work supported ry the National Science Foundation under Grant No. MCS-8210950.
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that the Conley index of an isolated invariant set is a connected simple system (Lemma 4.8

and Theorem 4.10) and leads to further simplifications in the sections 5 and 6. .
A unique coexact sequence for an attractor-repeller pair can be obtained in two

steps. The first step is to show that any index pair can be transformed into an NDR-pair .

(section 5.1) so that general results from homotopy theory can be applied to obtain the

existence of a long coexact sequence of index spaces. The second step is then to show

that all the maps in this sequence induce morphisms of connected simple systems which are

independent of the choice of the index pair (Theorem 5.,7).
In section 6 we begin with some general results on parametrized local flows X x A

and in particular we make precise what we mean by a continuous family o(l) of isclated

invariant sets in X x A (section 6.1). The continuation theorem is then phrased for

such a family o()A) and consists of three parts. The first part is to show that the

injection map of an index space for o©(A) in X x A into the corresponding index space

for the global isolsted invariant set S = U 0(A) in X %X A induces a morphism between
connected simple systems which is independe::Aof the choice of the index pair (Proposition
6.5). The second step is to show that this injection map is locally a homotopy
equivalence and the corresponding morphism of connected simple systems therefore an
isomorphism (Theorem 6.7). This local result allows a global continuation of the Conley
index in every compact connected component of the parameter space A by means of a
sequence of compact subsets of A to each of which the local continuation theorem
applies. However, different sequences may lead to different identifications between "far
away” index spaces. We show that any two of these connecting equivalences between index
spaces are infact homotopic if A is simply connected. This means that the "global
Conley index" 1I(0,X,A) consisting of the index spaces for o(A) in X x A together
with the above connecting equivalences is a connected simple system provided that A is
simply connected (Theorem 6.9). Finally, things are put together to obtain a long coexact

sequence for the global Conley index asgsociated with an attractor-repeller pair in the

case that A is simply connected (Theorem 6.10).
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2. HOMOTOPY THEORY

In this preliminary section we recall some basic concepts and results from homotopy
theory. We will work in the category of pointed topological spaces and continuous, base
point preserving maps. In order to avoid unnecessary complications, we will assume that

all the spaces under consideration are metrizable and therefore in particular compactly

qenerated. Standard references are SPANIER [12] and WHITEHEAD (13].

For any pair (X,A) of topological spaces with A C X we denote by A

T,

NS

x/a = ((X\h) U A}, [A}) S
i

L

the pointed gpace which is obtained by collapsing A to a single point denoted by [A].

A set UCX/A is open if either U is open in X and U (LA = g or the set

(U (X\A)) UAR is open in X.
For any two pointed (metric) spaces (X,x;) and (Y,yp) the product space X x Y
is understood as a pointed space with base point (x3,yg). Furthermore, we denote the sum

and the smash product of X and Y by

X VY=Xxy, u X x YL XxY,

XAY=XxXxY/XVY.,

For any two maps f : X * X', g : Y + Y' between pointed spaces the sum

fVg:X VX' +Y VY and the smash product f A g : X A X' + Y A Y are defined in an
obvious manner. The (unique) constant map between pointed spaces (X,xg) and (W,wq)
will always be denoted by ¢ : X + W, c(x) = wy for all x € X, and the identity map by

1y : X * X or simply 1t : X + X,

The suspension IX of a pointed space (X,xq) is defined by

X = X % [0,1)/%X X 0 Uxy x [0,1] UXx 1. v

-3-
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Hence IX = X A L' where L' = [0,11/{(0,1} is the pointed circle. The pointed n-sphere

is given by " = PV e AL as! (n times). The suspension ZL¢ of a map

9 : X + Y between pointed spaces is defined by EL¢ = ¢ A1 : IX » LY.

For any two pointed spaces (X,xo) and (w,wo) we denote by [X;W] the set of

.'.Ia.l.l'

homotopy classes of continuous, hase point preserving maps from X ¢to W. Then [X;W)

. is a pointed set, the distinguished point being the class of the constant map. We denote
by [f] the homotopy class of the continuous, base point preserving map f : X + W and

o by (X] the homotopy type of the pointed space X. If two maps fg : X + W and

fq: X * W are homotopic we denote this by fg5 ~ f4.

For any two pointed spaces (X,xg), (Y,yp) and any continuous, base point preserving

map ¢ : X * Y the mapping cone '1“p is given by

T¢ = X x [0,1) UW Y/X x 0 U xq X [0,1]

I 1 A

where the topological space X x [0,1] U¢ Y is obtained from the disjoint union of
X x [0,17 and Y by identifying the pair (x,1) € X x [0,1] with ¢(x) € Y for every
x € X. Note that there is a natural injection of Y into Tw. The importance of this

concept is based upon the following simple ohservation

REMARK 2.1

let ¢ : X*Y and g : Y * W be continuous, base point preserving maps between

pointed spaces. Then g © 9 ~c : X *+ W if and only if the following lifting problem has

a solution,
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Now let (X,xq), (¥,yg). (W,wg) be pointed spaces and let ¢ : X + Y be a
continuous, base point preserving map. Then the induced map w’ t (YiW) + [X)W) is

defined by w*[q] = [go ¢] for [g] € [YiW]., The sequence

(2.1) x %y Y g

of continuous, base point preserving maps between pointed spaces is said to be coexact if

for every pointed space (W,wy) the induced sequence

" ¥
W) e () S (zyw)

is exact. This means that ker w* = range W“ where
ker w' = {[q] e (Ywilgo o~c : X + w}
range ¥* = {(h o ¥} e (viW]](n} e (ZrW)}.
Choosing W=~ 2 and h = 1, or, respectively, W = TW and g = j : Y + Tw the
canonical injection, we obtain the following useful characterization for the sequence

(2.1) to be coexact.

PROPOSITION 2.2

The sequence (2.1) is coexact if and only if the following two conditions are

satisfied.

i) VO ¢~c: X *3, i.e. the lifting problem

o ez —
LN ealebsar S R g
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has a solution.

(ii) There exists a map h : Z + TW such that h o ¢ ~ 5§ : Y + TW' j being the

canonical injection of Y into Tw.

a0 .

Now let the pointed space (X,x;) be a closed subspace of (Y,x3), let 1 : X + ¥ . »A.J
denote tlre canonical injection and W% : Y * Y/X the canonical projection map, and

conaider the sequence

3

(2.2) X —rt Y —— Y/X .

Then ® 0 \ = ¢ : X * Y/X. Hence it follows from Proposition 2.2 that a sufficient
condition for the sequence (2.2) to be coexact is that the map 1 : X + Y is a

cofibration in the sense that the lifting problem

YxoUXx (0,1] —1—w
P4

(2.3) n P

”4/
Y x [0,1]

has a solution for every topological space W and every continuous map

g:Yx0UXXx [0,1] *+W. Equivalently, (X,Y) is an NDR-pair in the following sense.

DEFINITION 2.3 (NDR-pair)

Let X be a closed subset of the metric space Y. Then (X,Y) is said to be an

NDR-pair if there exist continuous maps r : Y x [0,1] » Y and a : Y * [0,1] such that [ ]

g

1
Py

-6=
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PROPOSITION 2.4

1. aly) = 0 <cs==> y @ X , L

Iz
- - d
i
N
]

2. r(y,0) =y vyey, I“
3. r(x,0) = x ¥yxeXx voe 0,1,
4. r(y,1) ex vyeyY with a(y) <1 . -

In fact, if X,Y is an NDR-pair and the continuous maps r : Y x [0,1] + Y,
a: Y+ [0,1] satisfy the conditions of Definition 2.3, then the map

G:Yx (0,1] +Yx0 UX x (0,1] defined by

]

(r(y,1),0-2a({y)), 0 < aly) € a/2 , 1
(2.4) G(y,0) = 1 (r(y,2-2a({y)/0),0), 0/2 < aly) <o, ;
(y,0), o € aly) €1, -
- 4
L
for y€Y and o e [0,1] 1is continuous and satisfies G(y,0) = (y,0) and *
G(x,0) = (x,0) for all yeyY, xe€X, o€ [(0,1]. Therefore we have the following -f;f}

result.

Let (X,xy) be a closed subspace of the pointed metric space (Y,xg). Then the

following statements are equivalent.

(i) 1 : X *Y is a cofibration. T

(ii) There exists a continuous map G : Y x [0,1] » Y x 0 U X x {0,1] such that

G(y,0) = (y,0) and G(x,0) = (x,0) for all yeyY, xeX, g€ [0,1].

(iii) X,Y is an NDR-pair. R 4

If these conditions are satisfied, then the sequence (2.2) is coexact.
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The map G : Y x {0,1] + Y x 0 UX x {(0,1] defined by (2.4) gives rise to a
‘; connection map § : Y/X + IX which leads to a long coexact sequence. More precisely, we
have the following important result (see e.g. WHITEHEAD [13, Theorem 111.6.22)).
THEOREM 2.5
I Let (X,x3) be a closed subspace of the pointed metric space (Y,xo), suppose that

X,Y is an NDR-pair and let the maps r : Y x [0,1] + Y, a: Y + [0,1] satisfy the

conditions of Definition 2,3, Let the connection map § : Y/X » IX be defined by

(r{y,1),1=2a(y)), 0 < aly) < 1/2 ,

(2.5) S(lyl) =
[x x 0}, otherwige ,
‘ for y € Y. Then the sequence
. (2.6) Xty Ty =S o Bl oy BT, gy 26 L

i is coexact.
L

PROOF. Let py : Y x 0 UX x {0,1) * IX be the natural projection which collapses
YxO0U Xq x f0,1) UX x 1 to a single point. Then Py © G provides a homotopy

between ¢ : Y * IX and § O W% ; Y * IX. Now let the maps

- j:ZX*T"=YX[0,1]/YX0UXOK[0,1]UXX1,

1 kY% >T, k(lyl) = [y,1] .,

be the natural injections. Then 3§ © 8 ~ k : Y/X + '1‘“ via the homotopy

- H: Y/X x [0,1] * Ty which is defined by

N -8

. v v - -
A TP

»
b




.—v.T

3 Ir(YI‘l)l“ZQ(Y)]' 0 < Q(Y) < /2,
e . H( [y]:al = (r(YI2-2°(y)/°)I1-0]I a/2 < Q(Y) <o,
. ly,1-0a], c € aly, €1,

n [

Hence it follows from Proposition 2.2 that the sequence Y ——* Y/X ~—— IX is coexact.
Now let py : T, * LY be the natural projection which collapses Y x f. Then the
map py © H : Y/X x {0,1] + LY provides a homotopy between ¢ : Y/X + IY and

Z1 06 : Y/X » LY. Finally let us define the map

d: Ly » T6 = Y/X x [0,1) U‘s IX/ (X} x (0,1} UY/X x 0

by

[ly},2-20}] e ¥/x x [0,%), 1/2<qg¢€ 1,
d({y,9}) = ¢ (x(y,1),20-2aly)} & IX, 0 < aly) o< 1/2,

(v/x x 0], og<€aly) €1, 0€0<1/2,

for (y,0] € LY. Then the map 4 © Zt : IX + T is given by

[x,20], 0 <0< 12,
a o Ii([x,0}) =
{Y/X x 0}, otherwise ,

for [x,0) € IX. This map is homotopic to the canonical injection 2% : IX + TG via the

homotopy & : IX x (0,1} + Ts which is given by

[x,(1 + 1)0}, 0<(1+1)0< 1,
®((x,0},T) =
[Y/x x 0}, otherwise ,
-Qw

hadn's a2 2
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for [x,0}] € X and Tt e [0,1). Hence it follows from Proposition 2.2 that the sequence

[ I

Y/X + IX + LY is coexact.

Finally, Proposition 2.2 shows that if any sequence of the form (2.1) is coexact,

then so is the sequence IX L9 sy —Z¥ & 5z of the suspensions. I

At the end of this section we introduce the extremely useful concept of a connected
simple system which is due to CONLEY [3]. A connected simple system is a subcategory of
the category of pointed spaces and homotopy ciasses of maps between these with the
additional property that for any two objects there is a unique morphism between these (in

each direction). More precisely, we make the following definition.

DEFINITION 2.6 (connected simple system)

A connected simple system consists of a collection I, of pointed spaces along with

a collection I, of homotopy classes of maps between these such that

(i) hom(X,X) = {[f] e IXIi]'[f] e Im} is nonempty and consists of a single element

for each ordered pair X,i of spaces in I,

(ii) if XXX e 1, and (f] e hom(X,¥), () € hom(X,X), then
(£ o £] e hom(x,X),

(iii) hom(X,X) = {[1x1} for all X e I,.

Note that each morphism in a connected simple system is necessarily the homotopy

class of a homotopy equivalence. Morphisms between connected simple systems are defined

as follows.

DEFINITION 2.7

A motghism ¢ : 1 »J between the connected simple systems I = (Io,Im) and

J = (Jg.9,) is a collection of homotopy classes of maps between spaces in I, and spaces

in J, such that




ARt Jeth e J ——

(1) for every X € I, and every Y € J, the set &(X,Y) = {{y] e [X;¥}}i¢) e &}

is nonempty and consists of a single element,

(11) if XX e1, and Y,¥ e, and if (v] € &(X,¥), (f] e hom(X,X),

{g] € hom{Y,¥), then (g © ¥ O £] e &(X,¥). R

Of course, any single map ¢ : X+ Y, X e I, Y € Jy, induces a morphism between the
connected simple systems I and J via property (ii) in the above definition. If a
morphism & : I * J consists of homotopy equivalences, then the homotopy inverses of
these maps induce a morphism 0-1 : J * I. Finally we mention that the suspension functor

L associates with any connected simple system I = (I,,I,) the connected simple system

I1 = (ZIO,EIM) which is defined by

1, = {(fxlx e b, Inp = (izey) i) e .} .




3. FLOWS

In this section we collect some elementary properties of flows. Although the results

are known we indicate at some places the main ideas of the proofs. Basic references are

BIRKHOFF [2], BHATIA-SZEGO (1]}, CONLEY (3}.

Let ' Dbe a topological space (not necessarily Hausdorff) and let the continuous map
(Y,t) * Yt from I xR into T be a flow, that is Y*0 = y and
Ye(t+s) = (Y*t)*s for every Y€ T and all t,s € R. A set S C [ is said to be

invariant if S*R = S. The maximal invariant subset of a set N C ' is given by

I(N) = {y e T|ysRCN} .

If N is closed then so is I(N), since the closure of any invariant set is invariant.

The w-limit sets of a set Y C T are given by

w(Y) = I(cl(Y*[0,%})) =
>0

cl(y- [t")) I3

W' (¥) = I(cL(Ys(==,0])) = [i cl(¥s(-=,-t]) .
t>0

Now let S C ' bhe a compact invariant set which is Hausdorff in its relative

L ]
topology. Let Y C S, Then w(Y) and w (Y) are compact invariant subsets of S and

they are connected if Y 1is. Furthermore, if U is a neighborhood of w(Y)}, then there

-
exists a t > 0 such that Ye[t,») C U. A similar statement holds for « (Y). A compact

invariant set A U S is said to be an attractor in S, if there exists a neighborhood T

* . . ’
U of A in S such that A = w(U). A compact invariant set A ( S is said to be a ®

*
repeller in S, if there exists a neighborhood U of A. in S such that A' =w {U).

The following Lemma gives a very useful characterization of attractors.




)
LEMMA 3.1
let st I' be a compact invariant set which is Hausdorff in its relative topology. _
Then a compact invariant set A (C S is an attractor in S if and only if there exists a ’
neighborhood U of A in S such that Y*(==,0] ¢ U for all y e U\a. ;“i
PROOF: The necessity of the condition is clear since y<(-»,0} C U implies Y € w(U). ;
If U is a compact neighborhood of A in § such that Y*{(-»,0] ¢ U for all
Y @ U\A, then there exists a t' > 0 such that Ye[-t ,0) ¥ U for all .
Y e U/ cl{s\U). Now choose a neighborhood V of A such that V'[O,t'] C U. Then
V+[0,®) ( U and therefore w(V) = A. R )
: LEMMA 3.2
r let s CT be a compact invariant Hausdorff space and let A be an attractor in S. .
4 Then the following statements hold. '
(i) If Yes and w(Y) CA# g, then Ye A. e
(i) If ves and w(Y) A #g, then w(Y) C A.
(1i1) A" = (v e slw(Y) (i & = g} is a repeller in 5, called the complementary ;";'
repeller of A. 7 .
(iv) a={yesl'(v) na" =g}
{v) If V is a compact neighborhood of A in § with v (ia" = 6, then
A = w(V), i -
(vi) If Yes, then wy) Ca'ty) aUa.
fvii) If A' is an attractor in A, then A' is an attractor in S.
)

PROOF: Let U be an open neighborhood of A in S such that w(U) = A.

*
(i) If w (Y) [ A # 4, then Y'(-tn) € U for some sequence t, tending to =

and hence Y € w(U) = B. A

-13-




(ii) If w(y) (A ¥ g, then Yt e U for some t » 0 and therefore
w(y) = w(y*t) C w(U) = A.
* 4
(iii) Choose t' > 0 such that cl(Us{t ,#)) C U and define U" = S\cl(us[t ,=)).
L4
Then S =U U U'. Furthermore U '(-,—t') C s\u and therefore U' igs a neighborhood of
. & -« .
w{(U)Cs\WCU. Hence ® (U ) is a repeller in S.
* - * *
If Yew (U) then w(y) Cw (U ). This implies w(Y) i A = ¢ and therefore
vyea'. 1f ve A', then Y'R [ U =g since otherwise (Y) C w(U) = A. Hence
* -« * * - L ] *
Y*R(C U and therefore Y € I{U ) = w (U ). We conclude that A = w (U ) is a
repeller.
(iv) The dual argquments of the preceding ones show that
* *
A=uw(t) = {yes|w(y) in =gl
» . * » LI
(v) let U be an open neighborhood of A in S such that A = (U ) and
- - * ; L 3 » -
U fva=g. Choose t* > 0 such that U s(-=,~t ]} CU C s\V. Then Ve[t ,») C s\U
*
and therefore w(V) C S\U . By (iv), this implies w(V) = A,
(vi) Follows from (i-iv).
(vii) Let U' be a neighborhood of A' in S such that U' C U and
w(G®* {(WA) = A, let Y € U' such that Y*(=-»,0] C U'. Then Y*{(-»,0] C U and
therefore Y € w(U) = A. Hence Y*{(-»,0] C U’ 1A and therefore Y € w(U®' (i A) = A'.,

By
lLemma 3.1, this implies that A' is an attractor in S. H

Let Ay and A, be attractors in a compact, invariant Hausdorff space S C I« Then
it follows from Lemma 3.1 that A, /1 A; is an attractor in S and from Lemma 3.2 (iii)
that A: V] A; is its complementary repeller. Py duality, A4y U A, is an attractor in
S and A: n A; is its complementary repeller.

We are now going to introduce the concept of a Morse decomposition of an invariant
set S. This concept serves as a tool to generalize the classical Morsge theory for
gradient flows on compact manifolds with finitely many critical points to arbitrary flows

and isolated invariant sets. One of the essential features of the general approach is the

-14-
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continuation theorem which cannot be derived in the context of the classical theory.
Also, in the classical theory there are no means to define an index for invariant sets

other than critical points such as periodic solutions or invariant tori.

DEFINITION 3.3 (Morse decomposition)

let S CT be a compact, invariant Hausdorff space. Then a finite collection

{H(w)lw € P} of compact invariant sets in S is said to be a Morse decomposition of

' aes mn am g

8 if there exists an ordering '1""'"n of P such that for every

v e s\U{M(7)|7 e P} there exist indices i,j e {1,...,n} such that i < j and - -4

. <

p <
L] -

s WlY) C MR, W () C M) . o
Bvery ordering of P with this property is said to be admissible. The gets M(w) are - 3

A

called Morse sets.

If S is a compact, invariant Hausdorff space in I and {M(7), v @ P} a Morse

*
decomposition of S, then for 7,7 € P we define

s

* .
if my¥w and ®w comes before = in every admissible ordering of P. This defines a

‘¢

partial order on P. Clearly, any total ordering of P is admissible if and only if it

.
Gt
Al g

preserves the partial order on P. A subset I C P is said to be an interval if

)

'

1
ek

A" er, neP, N <N A" ==mx>N L] . -

.
R
oY APV

For any interval 1 we define the set R

Aabd A

-15=
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nelr

In the following Proposition we collect some basic properties of the partially ordered

set (P,<).

PROPOSITION 3.4

Let S CT be a compact invariant Hausdorff space and let {(M(w)|r e P} be a Morse

decomposition of S with the asgociated partial order "<" on P. Then the following

statements hold.

(i) If I CP is an interval, then there exists an admissible ordering

Wyseee,  of P and i,j € {1,...,n}, i €3, such that I = ('i'°""j}'

* *
(ii) If {»,x } CP is an interval, then ¥ < x if and only if there exists a

L ] L ]
Ye@$sS such that w(y) C M(7) and ® (Y) C M(w ).

* *
(iii) let =%, € P. Then =® < W if and only if there exist sequences

*
o= NN L., =T €P and Y,,e..,Y, @ S\U{M(T)|® € P} such that
0 1 k am——— 1 k Pedrde b ARALLLY

»
}OMmix, ), w (Y

w(Yj =1

j) C H(lj), I o= ek .

(iv) Let I CP be an interval. Then M(I) is an attractor in S if and only if

(3.1) """ eP, "E€I, N <K =m=> ' €1,

In this case M(P\I) is the complementary repeller of M(I) in S and I is said to be

an attractor interval and P\I a repeller interval.

(v) If I CP is an interval, then M(I) is a compact invariant set,

{M(x)|n € 1} is a Morse decomposition of M(I) and {M(%)|n @ P\1} U {M(I)} is a Morse

decomposition of S,

-16~

Y,
ata

R




PR R N S g A PSP L St s bl A et o - T T T T e Y
S A R R A . . BRI A TR L e e

PROOF :

(i) Let I C P be an interval., Then the sets .

J={repP|3x e1 with w < n'}, X=P\(I LD ,

are intervals and can be ordered in the form J,I,K, preserving the partial order on P. .

Now choose an ordering of P which preserves the ordering of the sets J,I,KX and the

partial order on P, NN
(ii) Let {7,x')} be an interval and suppose that ¥ < . Then, by (i), there x;i
exists an admissible ordering on P such that l. follows immediately on ¥. Hence . §
there exists a Y € S with w(y) C M(v) and w'(Y) C H(w.). since otherwise one would _ ':
get another admissible ordering by interchanging ¥ and t', contradicting ¥ < w'. r:
(iii) Suppose that T < 'y and construct a sequence LA < L < e LI "’ . J

such that there isno " € P and no 3 € {1,...,k} with '3-1 <% < - Then the sets - j
{ e

“j-1'"j} _ P are intervals and therefore (iii) follows from (ii).
{iv) I1f 1 CP does not satisfy (3.1), then there exist = € P\I, l. € I such that
{n,x"} is an interval and % < ¥ . Hence it follows from (ii) that M(I) cannot be an
attractor.
In order to prove the converse implication, let l. e P satisfy

(3.2) LR vnepr .

*
Then I = P\{n } is an interval with the property (3.1). Let v* bea neighborhood of
L ] L 4 L ]
M(T ) in s with cl(u™) NM(") = ¢ for all " €1 and let Y € U \M(X ). Then it

follows from (iii) and (3.2) that w(Y) flcl(U') = 4 and therefore Y*[0,®) ¢ U'. Hence

NPT

L]
the dual result of Lemma 3.1 shows that M(%W ) is a repeller in S. The complementary

.

* [ 2 »
attractor of M("™ ) s given by M(1) = {y € slw (Y) ¢ M(¥ )}. Therefore M(I) is an

TGy

i

\
e v,

-}7=-

o

e,
0

v
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attractor in S and in particular a compact invariant set. Now statement (v) follows by
induction with S replaced by M(1).

Statement (v) is a direct consequence of (iv) and (i). 114

The notion of an attractor-interval as well as the proof of the previous Proposition
are due to FRANZOSA ([S].
The following concept has turned out to be very useful for the development of a

theory which covers a wide range of applications.

DEFINITION 3.5 (local flow)

Let ro C T be an open subset which is Hausdorff in its relative topology and let

X C "0 be locally compact. Then X is said to be a local flow if for every y € X

there exists a neighborhood U of v in T and an € > 0 such that

(X PuU)[0,e) CXx .

DEFINITION 3.6 (isolated invariant set)

Let X C T be a local flow and let S C X be a compact invarjant set. Then S is

said to be an isclated invariant set if there exists a compact neighborhood N of S

in X such that S = I(N). 1In that case N is said to be an isolating neighborhood

(for 8 in X).

If Nq and N, are isolating neighborhoods for the isolated invariant sets S,
and S;, respectively, in the local flow X C T, then Sy " S; is an isolated invariant
set in X with the isolating neighborhood N4y I N;. The following example shows that

there is no corresponding statement for the union of isolated invariant sets.

-18~
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LEMMA 3.7

If N is an isolating neighborhood for the isolated invariant set S in the metric

local flow X C I, then there exists a neighborhood N of N in X which is still an

igolating neighborhood for S.

PROOt: If the statement were false, then there would exist a sequence Yk e X\N such

that d(Yk't,N) € 1/k for all x € N and t € R. A limit point Y of Yy would then

satisfy Y € cl(X\N) f I(N), a contradiction, 111

If S is an isolated invariant set in a local flow X C T and {H(w)[n e P} is a
Morse decomposition of S, then the Morse sets M(w) are also isolated invariant sets
in X.

The following compactness result has been estahlished in CONLEY-ZEHNDER (4, Lemma

3.1}, For the sake of completeness we present a slightly simplified proof.

LEMMA 3.8

let N C X be an isolating neighborhood for the isolated invariant set S in the

LPL

metric local flow X C T, let {M(n)|n @ P} be a Morse decomposition of S and let

be the associated partijal order on P. Then the following statements hold.

-19-
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(i) If y°[0,®) CN then there is a8 w € P with w(y) C M(7). If ye(-»,0] C N
' »

» »
| then there is a "™ € P with w (Y) C M(w ).

(ii) If I CP 4is an attractor interval then the sets

M(1) = {y @ N|ys(==,0) C N and & (Y) C M(1) for some w € I} ,

' M (P\1) = {y e N|y*[0,#) C N and w(y) C M(") for some x e P\1}

are comgact .

)
l L ]

PROOF: Proposition 3.4 allows us to reduce both statements to the case P = {¥,¥ } uhere

-
{r} 1is an attractor interval, that is * (£ *®.
In order to prove statement (i), let us assume that Yy+[0,®) ( N and w(Y) ¢ M(w)
* *

) and w(Y) ¥ M(w ). Since w(Y) is connected, this implies that w(y) ¢ M(w) U M(7w ) and

*
hence there exists a Y' € w(y) CS with Y' & M(7) U M(x ).

* * B ..
Therefore w(Yy') C M{(n) and w (Y') C M(x ). Making use of the fact that Y'*RC w(y), .-

we obtain that M(®) N w(y) # ¢ and M(u.) I w(Yy) # #§. Now let us choose an open

-

*
neighborhood U of M(%) in N such that cl(U) I M(® ) = g, Then there exists a

- sequence ¢t > 0 tending to infinity such that Y-tn eu, Yo lim Y'tn € M(x) and e
n+o S
Yelt st .,] ¥ U. Hence there exists a sequence ty € [t,,t 4] with S

X . ' opt . et '..- i
i Y [tn,tn] C cl(u) and vy tn gu Let Y4 be any limit point of vy tn. Then ..-4
> 4
Y, € N\U anc Y, e w(y) ¢ S. Furthermore the sequence t; - t  has to be unbounded I
since otherwise 11 e YO-R C M(x). PBut this implies that 71-(-¢,0] C cl(u) and y
* ~ o
therefore (Y1) C I(U) = M(®). Since 71 # M(w) we conclude that w(Y1) C M(w ) i
. {
) contradicting the fact that =7 ¢ %x. This proves the first assertion in (i). The second ®
4
assertion in (i) can be established by analogous arguments. ;
For gtatement (ii) it is enough to show that the respective subsets of N are closed o]
since N 1is a compact Hausdorff space. Sl
) L
. JRRCRR
. RN
. Sy
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M*(P) is closec: Let Y e N\M'(P). Then by (i}, there exists a t > 0 such that

t
Ao oo

. - Y*t € N. This implies that Y'*t # N for all Y' in some open neighborhood of Yy in

N. Hence N\M'(P) is open in N and therefore M'(P) is closed.

.

e N
ot
.

a0

*
M*(w ) is closed: Let Yn e M+(I.) C M*(p) converge to Yy € m*(P) ana suppose that

PR L
'

v
[

AT SO OF G NN

-
Y ¢ M+(l')- Then w{Y) C M(%) and m(Yn) CM(r ) for all n € N. Now let U be an

*
open neighborhood of M{(%® ) in X such that cl(U) [, M(wm) = g. Since w(Y) C M(w),

A

L

there exists a t > 0 such that Yyet € cl1(U) and therefore Yn-t g cl(U) for every
sufficiently large n @ N. For each of these n € N there exists a t, > 0 such that o]

Yn'(tn,-) CUMNN and Yn'tn ¢ U. Let us choose a subsequence such that Yn.tn ]

(3]

* - *
convergegs to Y . Then Y # U and Yy +{0,») C cl(U) [ N which implies that

- L}
w(y ) C M(x ). Moreover, the sequence t, has to be unbounded since otherwise R

- * L ]
Y € Y*R and thus (Y ) C M(¥). Hence we obtain that Y °*t = lim Yn'(tn*t) e N for
’ * * n+e L ] - *
D all teRrR and thus Y € S. Recalling that Y ¢ U, we conclude that ® (Y ) ¢ M(® )
- L] *
and therefore w (Y ) C M(n). But this is a contradiction to % (£ %,

The closedness of M~(P) and M (7) can be established by analogous arguments. |||

a -21~
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4. INDEX THEORY

4.1. FEXISTENCE OF INDEX PAIRS . .

[

The concept of an index pair plays a crucial role in the definition of the Conley
index for isolated invariant sets. For the introduction of this concept we need the
notion of positive invariance. Let N be a compact subset of a local flow X C I'. Then

l a subset K CN is said to be positively invariant in N if L 4

yex, t 20, vy-[0,t] CN > Yyt € K .

DEFINITION 4.1 (index pairs)

Let X CT be a local flow and let S C X be an isolated invariant set. Then a

pair (N,,Ng) of compact sets in X is said to be an index pair for S in X if

(i) N,\W; is a neighborhood of s in X and S = I(cl(N,\Ny)), »

(ii) Wy is positively invariant in N4, and

(iii) 4if y e Ny and v°*(0,®) ¢ Ny then there exists a t > 0 with Y*(0,t] C N4

and Yt € N;.
R

L\
-

The crucial property (iii) of an index pair (N4,N3) says that every orbit which

leaves N,y in forward time has to go through the exit set No before leaving Nye

s For any subset K ( N we define the minimal positively invariant set in N which

i contains K by

v P(K,N) = {(y e N3t >0 with ys[-t,0] CN, Yo(-t) € K} . B
. T
. [
® ®

The whole difficulty for proving the existence of index pairs lies in the fact that

P(K,N) need not be closed, even if K is closed, and that its closure need not be

. positively invariant. This is illustrated by the following example in which the (posi- . 3
- - . {
® tively invariant) exit set N~ = {y € N]y«{0,e) ¥ N for every € > 0} is not closed. (] )
-22- o d
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This difficulty can be overcome by means of the following Lemma which is due to CONLEY-

ZEHNDER (4, Lemma 3.2}. However, there is a mistake in the proof of this result in (4].

we present a (hopefully) correct proof using an argument in CONLEY [3, p. 47].

LEMMA 4.2

Dt e At

Let X C T be a metric local flow, let N C X be an isolating neighborhood of the

I isolated invariant set S C X and let {M(ﬁ)lﬂ € P} be a Morse decomposition of S with

the associated partial ordering "<" on P. Then the following statements hold. -

(i)

I

X CN is a compact set with Kk l1M'(P) = 4, then P(X,N) is compact . . 1

e

(ii) For every attractor interval I C P and every open neighborhood U of

MT(I) in T there exists a compact neighborhood N; of M7™(I) in N such that N; C U T

and N; is positively invariant in N,

-23-
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PROOF:

(i) Let Yn € P(¥,N) converge to Y and let t, > 0 be chosen such that

vn-[-tn,O] C N and Vﬂ‘(—tn) € K. Then the sequence t, has to be bounded since

. otherwise any limit point v. of vn-(-tn) satisfies Y. € K and v'-lo,n) C N,
contradicting K I Mt (p) = #. Hence the sequence t, has a limit point t 20 and we
h get Y+[-t,0] C N, Ye(-t) € XK, and therefore Y € P(K,N).

(ii) We prove statement (ii) in four steps. Let us first choose any compact

neighborhood W of M(P\I) in N such that w P M (I) = g.

Step 1: If KCN is a compact set such that M (I) C P(K,N) C U I (N\W), then
P(K,N) is compact.
Proof: Let Yn € P(K,N) converge to Y and choose t, > 0 such that
L] - L] - L] - \
¥n { tn,O] CN and Y ( tn) € K. Then Yn { tn,O] C P(K,N) CUDP (N\W) for all
néeN. If t is an unbounded sequence, then we obtain ye¢(-=,0} C cl(U r (N\w)) which

*
implies w (v) C M(7) for some = € I and therefore vy € M (1) C P(K,N). If the

sequence t, is bounded and t > 0 is a limit point of ¢t,, then we conclude that

¥+ [~t,0] C N, vy°(-t) € X and therefore Y € P(K,N).

Step 2: There exists a > 0 such that

*
Ye(=t ,0) C cl(N\W) ===> vy € U N (N\w) .

Proof: If this implication would not hold, then there would exist sequences Yn €N and

t, >0 such that t, tends to infinity, vy e¢[-t ,0] C cl(N\w) and y £U © (N\w). Any ®

n

limit point Y of Ya would then satisfy v #U M (N\W) and v + (~=,0] C cl(N‘W). But

(P

- : -
this would imply o (¥) C M(I) and therefore v € M (1) C U N (N\W) which would be a e

e

contradiction,
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Step 3: Construction of N;.

Let us define the sets

A= {ye M-(I)|Y‘[0,t.] CN},B={ye M'(I)Iy-[o,t'] ¢ N} .

Then for every Y € A there exists an open neighborhcod U(y) of Y in T such that

cl(U(Y))'[O,t.] CU/l (I'\W). For every Y € B there exists a t(Y) > 0 such that

Yo [0,t(y)} C U N (I'\W) and ye*t(y) 2 N which enables us to choose an open neighborhood

U(Y) of Y in T such that cl(U(Y))*[0,t(y)) C U [ (I'\W) and cl(uly))etly) i N = g. -
Since M™(I) is compact, there exist finitely many Y1""'Yk € MT(I) such that the sets

U(Yj), = 1,.00,k, cover M (I). We define

1

k
K= U cllulyy) fiN), Ny =P(K,N) .
I=1

|
ey

Step 4: Ny C U i (N\w).

,
#_ 4 ddaa a'a

Proof: Let Yy € NI and let t » 0 with Ye{-t,0] C N and ye¢(-t) € K. Then

Ye(-t) € cl(U(Yj)) for some 3 € {1,...,k}. Suppose that y € U N (I'\w). 1If Yy €A,

*
then Ye[-t,t ~t] CUT: (T\w) and therefore t' < t. Hence there exists a

¢ e {0,t-t"] such that Ye[-t,~t’) C U (N\W) and Ye(-t') # U [ (N\W). This implies o
Y'[-t'-t',-t'] C cl(N\W) and 7ye(-t') 2 U (i (N\W) contradicting Step 2. If Yj e B, -
then Ye(-t,t(y,)=t] CU M (F\W) and ye(t(yj)=t) £ N. From Y+[-t,0) C N we obtain S
t(yj) >t and from Y 2 U (i (T\W) we obtain t(Yj) < t, a contradiction. We conclude ‘¥:i
that Y@ N (U (F'\w) = U [ (N\W) which proves Step 4.
By definition, the set N; constructed in Step 3 is a neighborhood of M (I) in ‘f
N which is positively invariant in N. Furthermore Ny = P(K,N) CU T (N\W) (step 4) }'t?
and hence N; is compact (Step 1). fll fi-i
~25~ .
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Now we are in the position to establish the following important existence result for

index pairs (compare CONLEY-ZEHNDER (4, Lemma 3.3)).

THEOREM 4.3 (existence of index pairs)

et X CT re a metric local flow, let N C X }e an isolating neighborhood of the

isolated invariant set S C X and let U be any neighborhood of S§ in TI. Then there

exists an index pair (N1,No) for s in X such that N, and Ng are Egsitivelz

invariant in N and cl(Ngq Ng) C U.

PROOF: By Lemma 3.7, the sets

Mt = {y e n|yel0,®) C N}, M = {y e N|y+(-=,0] C N}

+

are compact and S = M* N M~. Hence there exist open neighborhoods ut of M in N

and U- of M~ in N such that
et fiuTy Cun(x\c2(x\N}) .

By Lemma 4.2 there exists a compact, positively invariant set Nj in N such that
N}y C U7 and Nj is a neighborhood of M~ in N. Now define
Ny = P(N\U*,N), N, =N!' UN
0= N, N 1 YN -
Then N, and N, are positively invariant in N and N1\N0 C vt (L U™ and hence
c1(N1\N°) C U. Furthermore Ny is compact (Lemma 4.2(i)) and Nj fi § = §. Therefore

N1\N0 is a neighborhood of §. Clearly § = I(cl(N1\No)), since S C cl(N,\Ny) C N.

It remains to show that Ny is the exit set of Ny.
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For this purpose let Y € N4 such that Y*[0,®) ¢ Ny and suppose that Y # Ng.

Define

t* = sup{t > 0]ye[0,t) C N1\NO} .

* + -
Then Y*t € cl(N1\N°) Cel(u” rnu™) C x\el(xX\N). Since X is a local flow there exists
* - *
an € > 0 such that Ye[t ,t +e] C X\cl1(X\N) C N. Since Y*'t € Ny we conclude that

* * « %
Yot ,t +€] C Ny and Yeit ,t +€] [ing # 6. i

The next result shows the existence of a filtration of index pairs associated with a

Morse decomposition of S (compare CONLEY-ZEHNDER (4, Theorem 3.1]).

COROLLARY 4.4 )

Let X CT be a metric local flow, let S C X be an isolated invariant set and let

{M(®),m @ P} a Morse decomposition of S with an admisgible ordering % ,...,5 of P. L
1 n — .

Furthermore let (Nn,No) be an index pair for S in X. Then there exists a filtration .

No C N, C sse ( N4t N,

of compact sets such that (Ny,Nj_q) is an index pair for ;;a;
v
. k oY
My = {ve slo(y) Lw (Y) C i:j M)}

whenever 1 € § € k € n. '
PROOF: Define N = cl(Nn\No). Then, by Lemma 3.7, for any 3 € {1,...,n} the sets

+ 3 L]
My = {y e mlys(0o,%) C N, w(Y) C Mnj}

-27-
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M; = {y e N|y*(-=,0} CN, m'(y) C M,

31}

are compact. Now let Np = N [1 N, and define Ni C N recursively such that Ni is a
compact neighborhood of M; in N which is positively invariant in N5*1 and satisfies
N5 (;M;§1 =¢ (Lemma 4.2), j = n-1,...,1. Then the sets Nj = N5 U Ny satisfy the

requirements of the Corollary. |l|

REMARK 4.5

A very nice refinement of the previous result has recently been established by
FRANZOSA [S]. Let N C X be an isolating neighborhood of the isolated invariant set S
in the metric local flow X C I' and let (M(n)|l e P} be a Morse decomposition of S
with the associated partial order "<" on P. Let J denote the set of attractor
intervals in P. Then FRANZOSA has shown in (5] that there exists a family {N(I)|I e J}
of compact, positively invariant sets in N such that

(i) (N(J),N(I)) is an index pair for H(J\I) for all 1,3 e J with I CJ, and
(ii) N(I 1 J) = N(I) [.N(J), N(I U J) = N(I) UN(J) for all 1,09e€J.
The proof is not easy. The essential difficulty is the requirement that both the

intersection and the union property have to be satisfied simultaneously.

4.2. BQUIVALENCE OF INDEX PAIRS

The most important property of index pairs is that the homotopy type of the pointed
space N,/N, is independent of the choice of the index pair and therefore depends only on
the behavior of the flow near the isolated invariant set S (CONLEY-ZEHNDER (4], KURLAND
[6] ). We present a highly simplified proof of this fact. More precisely, we will show

that for any isolated invariant set S in a local flow X the collection

{N1/N0|(N1,N0) is an index pair for S in X}

-28=
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along with a certain collection of homotopy classes of flow induced maps is a connected
. simple system in the sense of Definition 2.6. The proof consists of the following three

Lemmas.

LEMMA 4.6

et N be an isolating neighborhood for the igolated invariant set § in the mstric

local flow X C ' and let U be a neighborhood of § in X. Then there exists a

b - t > 0 such that

A dndmdnschandeni,

Ye[=t,t] CN ===> Y @U .

PROOF: If there would exist sequences Yk e x\u and ty » 0 such that ty tends to

|
E’ infinity and Yk'[-tk,tk] CN for all kx @ N, then any limit point Y of Yy would - 4
L
[ satisfy Y € c1(Xx\U) and Y*R CN. This would imply Y e § ficl(x\u), a E
- C
- contradiction. ||| - 4
The next Lemma defines a fiow induced map from N,/Ng into 51/§° for any two index )
pairs (Nq,Ng), (ﬁi'ﬁo) ot § in X. g :}
.~‘ .1
- <
. ’ b
LEMMA 4.7 ]
Let (N4,Ng) and (N1,N0) be index pairs for the isolated invariant set S and ! 4
choose T 2 0 such that the following implications hold for t > T
(4.1) Yel-t,t] C N1\No sam> Y € N1\No . .
(4.2) Yel-t,t] C N AN ===> v e N \Ng . A
. -
Then the map f : N4/Ng X (T,®) * N1/N0 defined by )
S
]
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. (ye3tl, if vye*(0,2t]} C "1\“0' ye (t,3t] C i1\ﬁo ,
(4.3) £CIY),t) = £°([Y)) = _
(Nol, otherwise ,

for Ye€Ny and ¢t 2T, is continuous.

PROOF:
ist _case. v°([t,3t] £ cl(N,\N ).
In this case Y-t. ¢ c1(ﬁ1\ﬁo) for some t* with t < t* < 3t. Hence there exists
a neighborhood U of y-t' in T such that U (1c1(§1\ﬁ0) = g, By the continuity of
the flow, this implies the existence of a neighborhood W of (y,t) in T x [T,») such
that, whenever (Y',t') € W, then Y"t. ey and t' < t' < 3t'. We conclude that
Yre[t',3t") ﬁ-ﬁ1\§o and hence f([y'},t*) = [ﬁol for every (y',t') @ W with Y' e N,.
Note that the case Y+*[0,2t] ¢ cl(N1\No) can be treated in a strictly analogous

manner. Hence we can assume from now on that
(4.4) Yo [0,2¢) C cl(N \Np), ¥elt,3t) C c1(ﬁ1\ﬁo) .
2nd case Ye[t,3¢) N ﬁo = g,
In this cagse it follows from (4.4) that vye*[t,3t] C ﬁ,\ﬁo. By (4.2), this implies
Ye2t € N1\N0 and hence ye«[0,2t] C N1\N0' Therefore f{([Y),t) = y*3t € ﬁ1\§o.
Now let U be a neighborhood of Y*3t in [. Then, by the continuity of the flow,

there exists a neighborhood W of (Y,t) in T x [T,%} such that, whenever

(vy',t') e w, then
Y'e[0,2¢') (iNg =4, Y'o{t',3t'] [Ny =g, Y'+3t'ev.

If Y’ € Ny, then we obtain Y'[0,2t'] C Ny Ny which, by (4.1), implies Y'st' e N,\N,

-30-
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and hence Y'¢[t',3t'] C N1\N0° Therefore f£(([y'],t') = {y'*3¢t'] = y'«3t' @ U for every : J

(y',t') e W with Y' € Ny, ,
3rd case Y*[t,3t) [ N; # 4. T
In this case it follows from (4.4) that 7Ye3t € ﬁo. Now let [U] be any '},.i

neighborhood of f£([Y},t) = (ﬁol in §1\§0 and define

U= ([U} AN \NG) U (TN, UNG .

Then U is a neighborhood of ﬁo in T and L

L (U} = (U N N1\N0) u LS L

By t.ue continuity of the flow, there exists a neighborhood W of (y,t) in [ x [7,®)

- such that, whenever (Y',t') € W, then Y'*3t' € U. This implies that

£O[Y']1,t') e ([Y"St'],[No]} C (o N1\N0) U [Nyl = {u)

for every (Y',t') € W with Y' € Ny. |1

LEMMA 4.8

Let (N4,Ng), (§1'§o)' (§1,§0) be index pairs for S. Choose T » 0 such that

(4.1) and (4.2) are satisfied for t » T and suppose that the implicationg 25.x

(4.5) Yel-t,t) C N‘\N0 a==> y € N,‘\No
(4.6) Yo (-t,t} C N,\No ===> Y € N1\N0 X
- - = K
hold for t > T. Finally, let f : Ny/Ng * [T,®) * N, /N, be defined by (4.3) and .
-31-




£f: §1/ﬁo x (T,») + 51\N0 analogously. Then the following equation holds for

t > max{T,T}

- (ye6t), vo[0,4t] C N \N), Ye(2¢,6t] C R\,
F(EC(Y],e),8) = .
[No], otherwise, Y € Ny .

PROOF: We have to show that

Ye[0,2t] C N1\NO, Ye{t,5t) C N1\N°, Y* [4t,6t) C N1\No

is equivalent to
ﬁ Y [0,4¢t) C N1\N0, ye[2t,6t] C N1\N0 .

But this follows immediately from (4.1-2) and (4.5-6). I

Now we are in the position to define the index of an isolated invariant set.

DEFINITION 4.9 (index)

Let X CT be a metric local flow and let S be an isolated invariant set in X.

Then the homotopy type h(S) = [Ny/Ng] of the pointed space N4y/Mg, (N4,Ng) being an

index pair for S in X, 1is said to be the homotopy index of S in X.

The Conley index of S in X is the pair

1(S) = I(S,X) = (Ig,Ip)

.

LA

where
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I4 = (N,/No|(N,,N0) is an index pair for S in X} ,
’ t R € - -
In= UV IN N N /B €1, ana €5 Ny/Ng + N /N,

is the map defined in Lemma 4.7} . el

THEOREM 4.10

I Let X CT be a local flow and let S be an isolated invariant set in X. Then

h(s) is independent of the choice of the index pair and I(S,X) is a connected simple

system.

PROOF: The existence of a homotopy class of maps in I, between any two spaces Ny/Ng,
§1/§0 in I, follows from Lemma 4.7. Lemma 4.8 shows that the composition of any two

morphisms in I, is still in Iy, Finally, it follows from Lemma 4.7 with N, = N,,

ek A g

Ng = Ny, T =0 that [y, /,) € Im for every NyMg € Io- This shows that I(§,X) is a .

&

connected gimple system. Therefore the morphisms in I, are homotopy equivalences and

hence h(S) is independent of the choice of the index pair. lll

L\

Note that the previous theorem summarizes the paper [6) of XURLAND and one of the » ﬂ

main results in CONLEY-ZEHNDER [4, Theorem 3.2].

» - :1
. -
. -33-
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5. A COEXACT SEQUENCE FOR ATTRACTOR-REPELLER PAIRS

The purpose of this section is to establish a coexact sequence for the Conley index

of an attractor-repeller pair along the lines of Theorem 2.5. The first step in this
direction is to show that any given index pair can be modified in such a way that it

becomes an NDR-pair (section 5.1).
index pairs which are involved in the coexact sequence induce morphisms between the

corresponding connected simple systems which are independent of the choice of the

particular filtration of index pairs (section 5.2).

5.1. REGULARIZATION OF INDEX PAIRS

We will show that an index pair is an NDR-pair if it is regular in the following
sense.
DEFINITION 5.1 (regular index pair)
An_index pair (N1,No) for an isolated invariant set S in a local flow X C T

said to be reqular if the function 71 : N, * {0,%]

defined by

sup{t > ofye[0,t] C N \Nj}, v e N\, ,

(5.1)

T(y) =

0 . Y e No .

is continuous.

-34~-
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The figqure below illustrates an index pair which is not regular j

pra .

m Figure 3

The next lLemma gives a sufficient condition for an index pair to be regular. We were not ' 1

able to prove that this condition is also necessary and leave this as a conjecture.

o
’ LEMMA 5.2
Let (N1,N°) be an index pair for the isolated invariant set S in the local flow
h X C T and suppose that
v - (5.2) Y+[0,€] L cL(N\WN) VYyeN, Ve>O0.
E Then the index pair (N4,Ng) is regular.
. PROOF: Let 1 : N, + [0,%] be defined by (5.1) and let y € Ny be given.
First assume that 0 < T(Y) € ® and choose T € (0,t(Y)). Then Y*([0,T] C N1\N0
4 and thus there exists a neighborhood U of Y in T such that U-[0,T] [iNg = #. Hence

Y'+[0,T} C N1\N0 for all Y' e U fiNy and therefore T(y') > T for all

Y'eu I Ny.

Secondly, suppose that 0 € 1(Y) < ® and choose T € (t(Y),”}. Then it follows from

(5.2) that Y+t ¢ cl(N1\N0) for some t € [1(Y),T]. This implies that there exists a

-35~
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neighborhood U of Y in T with Uet f.cl(N,\No) = #. We conclude that
T{y') € t €T for all Y' €U [/ Ny.

This proves the continuity of T. I

In order to transform a given index pair into a regular one we prove the existence of

a Lyapunov function (compare CONLEY (3, p. 33]).

LEMMA 5.3

Let (N,,Ny) be an index pair for the isolated invariant set S in the metric local

flow X C I'. Then there exists a continuous (Lyapunov) function g : Ny + [0,1] such

that

(5.3) g(y) = 1 <===> ye[0,2) C Ny and w(y) C s,
(5.4) g(y) = 0 <===> y € Ny ,

(5.5) £t >0, 0<gly) <t yo[0,t] C Ny ===> g(Yet) < glY) .

PROOF: Following the lines of CONLEY {3, p. 33} we construct the Lyapunov function

g : Ny *» [(0,1] in three steps.

Step 1: The function & : Ny + [0,1] defined by

a(y,Ny)

vy = Y Ng) + a0, 5

Y en,
is continuous and satisfies N4 = 1-1(0) and S = 2-1(1)-
Step 2: The function k : Ny *+ [0,1] defined by

k() = supif(yst)lt >0, ye[o,t] C N}

-36~
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is continuous and satisfies

k(y) = 1 <===> y+[0,») C N1, w(y) ¢ s,
k(Y) =0 <===> Y € No .

Yo {0,t] C Ny ===> k(yet) < k(y) .

PROOF: The only nontrivial property of X is the continuity.

Let Y @ Ny be given, assume first that 0 < k(y) € 1 and choose € e (0,k(Y)).
Then there exists a t > 0 such that Y-(0,t] C Ny and £(yet) > k{(Y) - €. Then, of
course, Y°*([0,t] C Ny Ny and hence there exists a neighborhood U of ¥y in T such
that Us[0,t] {1 Ng =g and &(Yy'-t) > k(y) ~ € for all Y' e U i Nq. This implies

k(Y') > k(y) - € for all Y' € U [ Ny.

Secondly, suppose that 0 € k(Y) < 1 and choose € €@ (0,1-k(Yy)). Furthermore,

agsume that there is a sequence Y, € Ny such that Y = lim Yo and k(Yn) > k(Y) + ¢
o0

for all n € N. Then there is a sequence t, 2 0 such t:at Yn°[0,tn] C N‘\No and

(Y _*t ) > k{Y) + €. The sequence t has to he bounded since otherwise
n n n

Y * (0,®) C N1\N0 contradicting k(y) < 1. Hence the sequence tn has a limit point

t and we obtain Y*{0,t] C cl(N1\N0) and £(y ¢ t) » k(y) + €, again a contradiction.

We conclude that there exists a neighborhood U of Y in I such that

k(y') € k(y) + € for all Yy € U (i Ngy. Thig proves the continuity of k.
Step 3: The function g : Ny *+ [0,1] defined by
t
(v) -t

gty) = | e “k(Y*£)dE, t(y) = sup{t > o[ye(0,t] C N},
0

satisfies the requirements of the Lemma.
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PROOF: The conditions (5.3) and (5.4) are obviously satisfied. In order to establish
- 4
(5.5), let Y e Ny satisfy 0 < g(y) < 1 and suppose that - ®
-]
T
- . . .
0 <t<t =guplf > 0|lye[0,] C u,\no} <o, S
. 1.‘;
- T
Then ® J
*
t-t
glyet) = | e “k(ye(t+£))dE
° .
. -
t-t L
< | e “k(Y*E)dE
0
*
¢ -
< e k(yeE)aE
0
= g(Y) .
Now we prove the continuity of g at vy € Ny. If Y e Ny this follows from the
e il
fact that g(y') € k(Y') for all y' e Ng. If ye[0,®) C N, \No then the continuity is a ,--»71

consequence of the inequality

T o R
lg(y') = g € |k(y'*E) = k(ysE)|aE + 2 | e Cag A |
(4] T ’ 4
for T large and Y'¢[0,T) C N1\N0. If ye N1\N0 and y-[0,#) (i Ny # ¢, then for R
every € > 0 there exists a T > 0 such that vy«[0,T] C N4 Ng and k(Y*T) < €. Hence b

the following inequality holds for all Y*' e Ny with Yy'+(0,T] C Nq Ng and

k(Y'*T) < 2¢

-38~
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= T T T,

T
lgty*y = gty €/ Ik(y'e€) ~ k{ye£)|aE + 3¢ .
0

Thus the continuity of g follows from that of k.

The completes the proof of Lemma 5.3. [ll

REMARK 5.4

Let (N1,N0) be an index pair for the isolated invariant set S in the metric local
flow X C T and let g : Ny + [0,1] be the Lyapunov function of Lemma 5.3. Then we can
replace Ng by N_ = {y e N,IQ(Y) < £} and it follows from Lemma 5.2 that (N, N.) is a

regular index pair for S in X 1in the sense of Definition 5.1.

5.2. A COEXACT SEQUENCE

Let S be an isolated invariant set in the metric local flow X C T, 1let A be an
attractor in S and let A" be the complementary repeller. Then it follows from
Corollary 4.4 that there exists a filtration Nj C N, C N, of compact sets in X such
that (Ny,Ng) is an index pair for S, (N4,Ng) is an index pair for A and (N,,N4) is
an index pair for A'. By Remark 5.4, we can assume without loss of generality that the

index pair (N,,N4) 1is regular. Hence the function <t : N, * [0,») defined by

sup{t > 0|y+(0,t] C NZ\N1}, ye NZ\N1 .
(5.6) Ty =
0 , Y € N1 f;

for Y € N, is continuous and the pair N,/N,, Ny3/Ny of pointed spaces with the natural
inclusion 1 : Ny/Ng * N2/N0 is an NDR-pair. 1In fact, the functions

ro: Np/Ng x [0,1] » Np/Ng and a : N,/No + [0,1] defined by

=39~
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{yeot(y)], 0 < 1(y) <€c, {
(5.7) r({y),o0) = :
[Yy*oc], c € T(Yy) € @,

t(Y)/e, 0 < 1(y) < c,

(5.8) a({y]) =
LI c € 1(y) €=,

for Yy € N, and o € [0,1] satisfy the requirements of Definition 2.3 (the constant
c > 0 is merely a scaling factor). With these functions the connection map

i: § : Nz/N1 + 2N1/N0 defined by equation (2.5) takes the form - 4

[yet(y),1=t(Y)}], O <€ 1(Yy) € 1,
(5.9) §(ly]) =
[Noxoll 1< 1(y) € »,

for Y € N, (we have chosen c = 2). Hence Theorem 2.5 yields the following result.

COROLLARY 5.5

Let A,A' be an attractor-repeller pair for the isolated invariant set S in the

metric local flow X C I'. Furthermore, let Ng C N1 C N; be a filtration of compact sets

in X such that (N,,Ng) and (N1,N0) are index pairs for S and A, respectively, -:;'}

* . 0 o
and (N,,Ny) is a regular index pair for A . Finally, let 1 : N,/N, + N,/N, and s e

T N,/Ng > Np/Ny be the natural maps and let § : N,/N, * IN,/N, be defined by (5.9) R X

and (5.6). Then the following sequence is coexact

1 " 8§ I In o .
(5.10) Ny/Ng — NZ/N0 — Nz/N1 — £N1/N0 —_— ENZ/NO —_— sse .

REMARK 5.6 R

Given an index pair (N1,N0) for the isolated invariant set S in a local flow

X C T, the pointed space IN,/N, can be identified with the space §1/§0 where

=40~
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x (-1,1}, N, = N

N, =N o o

1 1 x [=1,1] UN x {~1,1} .

These two spaces define an index pair for the isolated invariant get §=8x0 in the
local flow X = X x RC T = T x R where the flow on T is defined by

(Y,E)°t = (Y't,Eet) for YeTl and E,t € R.

Note that each of the maps in the sequence (5.10) induces a morphism between the

} corresponding connected simple systems. We denote these morphisms still by

v s I(A) * I(S), ™ : I(S) * I(A.) and 6 : I(A') + II(A), respectively. Hence we get

: H

the following coexact sequence of connected simple systems

T

- (5.11) 1(A) —— 1(5) — 1(a") =5 z1(a) —LLs F1(s) =21 ur

The whole point in this section is that this sequence is independent of the choice of the
particular index filtration. More precisely, we prove the following theorem (compare

KURLAND [7]).

- THEOREM 5.7
Ei- Let A,A' be an attractor-repeller for the isolated invariant set S in the metric ;i?
local flow X C T. Furthermore, let Mg C N, C Ny be a filtration of compact sets in ;;;

X such that (N,,Ng) and (N4,Ng) are index pairs for S and A, respectively and -
(N,,Nq) is a regular index pair for A*. Then ’fj;
{i) the injection 1 : N1/N0 + Ny/Ng induces a morphism between I(A,X) and ;i}

I(s,X) which is independent of the choice of the filtration,

{ii) the projection 7 : NZ/NO * Np/Ny induces a morphism between I(S,X) an

I(A',X) which is independent of the choice of the filtration, and

-41- 32;
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{(iii) the connection map 6 : Nz/N1 > 2N1/No defined by (5.9) and (5.6) induces a

morphism bhetween I(A',X) and ELI(A,X) which is independent of the choice of the

filtration.

PROOF: Let R _C N, C N be another filtration of compact sets in X such that

(ﬁz,ﬁo) and (N_,N_ ) are index pairs for S and A, respectively, and ‘iz'i1) is a

reqular index pair for A'. Furthermore, let 1 : §1/io > Nzlﬁo, T e ﬁz/ﬁo + iz/ﬁ‘,

3 ﬁz/ﬁ‘ > 2“1/ﬁ0 denote the associated maps and let T s ﬁz + [0,#]) denote the

"entrance-time” for the subset ﬁ,, defined analogously to (5.6).

In order to prove statement (i), choose T > 0 such that the implications

(5.12) ye[-T,7) C Nl\No ==x=> y € "1\"0 .
(5.13) Y*[-T,T] C n1\u0 ===> Yy € u1\uo ,
(5.14) Yo [-T,T} C N2\N0 ===) Y € Nz\No .
(5.15) Ye[-T,T} C NZ\NO === Y @ “z\"o .
PR t = A t;"" N
are satisfied and let f- : Ny/Ny * N1/H0 and g- : NZ/NO + Ny /N be defined by

. (ve3t], vo[0,2t] C N N, yele,3t) C N\,
(5.16) £}y =
[Nol, otherwise, Y € Ny ,

[ye3tl, yefo,2t] C R \N , velt,3t] C N \Np ,
0
(5.17) gt = 20

[Ngl, otherwise, Y € ﬁz .

both for t » T. Then we have to show that gt o T o £t . N1/N0 + Na/Ng is homotopic to
the canonical injection 1 : N1/No * Np/Ng. In fact, it follows from (5.12-15) that for

every Y € Ny and every t > T
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yel0,2t] C N1\N0, Yelt,3t] C ﬁ,\ﬁo .

Yo {3t,5t] C ﬁz\ﬁo, Yo [4t,6t] C Nz\No .

is equivalent to Y°*(0,6t] C NZ\NO. Hence

lye6t], v+(0,6t] C N \N
gt o To sty = 270
[Ng], otherwise, Y € N,y .

It follows from Lemma 4.7 that this map is homotopic to 1 : N1/N0 * ¥3/Ng. Thus we have

established (1i).

In order to prove (ii), suppose that the implications (5.14), (5.15) and

(5.18) Yo [-T,T] C NZ\N1 ===>y € N2\N1 .
{5.19) Y* [~T,T] NZ\N1 ===> Yy @ Nz\n1 '

are satisfied, let g% : N, /N, * Ny/N, be defined by (5.17) and h® : Ny/N, * NZ/E1 by

[ye3el, ¥o10,2t) C W\N,, Yo lt,3e) C NN, ,

(5.20) nteivly = .
[N1l, otherwise, Y € Ny ,

hoth for t » T. Then we have to show that ht o 1 o gt : ﬁz/ﬁo hd ﬁz/ﬁ1 is homotopic to

the canonical projection T ﬁz/ﬁo + ﬁz/ﬁ1. In fact, it follows from (5.14~15) and

(5.18-19) that for every Y € 52 and every t > T

Ye10,2t) C ﬁz\ﬁo, Yo (t,3t] C N,‘,\N0 ,

Yo [3t,5¢] C N2\N1, Yo [4t,6t] C NZ\N1 .

is equivalent to Y+ (0,6t] C ﬁz\ﬁ1- Hence
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[ys6tl, v+ [0,6t]) C N,\N,
ht o w o gt(tv]) =

.

(§1], otherwise, Y € ﬁz

.r‘v.f'm‘. .

It follows again from Lemma 4.7 that this map is homotopic to T ﬁz/ﬁo + NN This

27"

e

proves statement (ii).

In order to prove statement (iii), choose T > 0 such that the implications (5.12-
15) as well as (5.18-19) are satisfied, let nt H Nz/N1 > §2/ﬁ1 be defined by (5.20)

r = =
and f° N1/N0 * Ny/Ng by

- . (ye3t], v°[0,2t] C ﬁ1\ﬁo, Yelt,3t] ¢ N1\N1 .
. (5.21) Sy =
[Ngl, otherwise, Y €N, ,

poth for t > T. Then we have to show that Lff o 3 o n® . N,/N, * IN/N,  is homotopic
to §. First of all, it follows from Lemma 4.7 that the map § = 8% is homotopic to the

map 8% : N/N, % IN./N which is defined by

[Ye(6t+T(y*3t)),1-T(Y*3t)], 4if v*(0,3t] C N\N, ,
§tcrvy) = 0 ¢ T(Y*3t) < 1 and Ye[0,6t+T(Y+3t)] C N,\Ny

[Ng x 0], otherwise, Y € N, .

A homotopy between Xft oo qt and St is given by the family of maps

o}
F N2/N > ZN1/N

1 0 € 0< 1, defined by

0'
bre(6e+17 (1)), 1-1%) 1, if ye(0,2¢] C N AN,

(¢] . g [

FOlYi) = 0 ¢ T(Y) <1, and Y°*[0,6t+t w)lcngno

[Ng x 0], otherwise, Y € Ny

where
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0(y) = (1-0)T(yet) + ar(ree) = 26, ¥+ {0,2t] L N\N, .

=
w
P RO

Note that T(Y*t) makes sense since Y°*[0,2t] C NZ\N1 implies that Y°t €@ §2\§1- of S

vy
PR
'

B

course, F' = 6%, Furthermore it follows from {5.13-15) and (5.18) that for all C

Y € Ny and all t » T L
[N

Ye{0,2¢) C M\N,, 2t < TYet) < 2t + 1, ]

Y+ {0,6t+T(Y*3t)] C NZ\NO . _
]

is equivalent to

ye[0,2t] C Nz\N1, v [t,3t] C ﬁz\ﬁ1 .

.iﬁrrrrrfv

0 < T(Y*3t) € 1, Y*[3t+T(ye3t),5t+T(y*3¢)) C ﬁ,\ﬁo .

Yo [4t+T(Y*3t),6t+T(Y*3t)] C N1\No .

v

This implies that Fo = Eft c3o gt. Hence it remains to show that F° is continuous on
the domain N,/N, x [0,1]. We prove this for the case t > 2T and t » 1 in seven

steps.
Step 1: If 7Y*[0,2¢t] C NZ\N1 and t 2 2T, then
[teyet) = T(yet}] € 7.

PROOF: First, Y°[O0,t+1(Y*t)) C NZ\N1 and hence Y°*I[T,t=-T+T(Y*t)) C §2\§1. by (5.18).

This implies i )

T(Y=t) 2 T{y*t) -T>T.
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Furthermore, Y*I[T,t+T(Yet)) C F'z\ﬁ1 and hence Y*[2T,t-T+T(Y*t)) C "z\“1' by (5.19).

This shows that

T(yst) » T(Y°t) - T .

Step 2: If t > 2T, Y+[0,2t] C N,\N, and 0 < °(y) < 1, then

2t = (1-0)T < T(Yy*t) < 2t + (1=-0)T + 1,
E 2t - OT € T(Y*t) < 2t + 0T + 1 .

PROOF: Since T(Y*t) € T(Yst) + T (Step 1), we have

T p—

él 0 < 10Y) € (1=0)T(Y*t) + a(T+T(y*t)) - 2t

= T(Y*t) + OT - 2t

and

15 %) > (1=g)(T(Y*t)=T) + oT(yet) - 2t

T(Y*t) - (1-0)T - 2t .

Since T(Y*t) > T(Y*t) - T, we get

15 19(7) > (1-0)T(Y*t) + o(T(Y*t)-T) - 2t

T(yst) - 2t - oT

L]

and

0 < 19(y) € (1-0)(T(Yot}+T) + aT(Y°t) - 2t

T(yst) + (1-0)T - 2t .

PRI
P )
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. . . .
r. ) Step 3: If (v, < 3t - (1-0)T, then F : NZ/NI * lTN,/No is continuous at ([y]},0).

. PROOF: Choose a ne.ghborhood W of (Y,0) in Ny x {0,1} such that, whenever

- (y',2', € w, then 71T{y', ¢ 3t - (1-0';T. Then it follows from Step 2 that either

‘K . a' g’

O Y'e[0,2t) ¥ N2\N1 or 1T (Y') # (0,1). Hence F ({y')) = [No x 0] for all

- (Y',0') € w. oo

Step 4: From now on we can assume that 1(y) 2 3t - (1-0)T and hence

1
PP T W)

(5.22, ye{0,2t) C N2\N1 .

o . . .
If (5.22, is satisfied and 71 (y) @ (0,1), then the function F is continuous at

(ly;,9,.
] g Ty
PROOF: First note that F ([Y]) = INO x 0}, Secondly, note that the function 1 (Y) is )
continuous on the domain {(y,0) e Nz x [0,11{ye(0,2¢t) (.N‘ = g}, Hence for every . ',
€ > 0, there exists a neighborhood W of (y,0) in Nz x [0,1] such that, whenever -
o' R

(y',0') €W, then Y'+{0,2t) 1Ny =¢ and T (Y') ¢ [e,1-€]. This proves Step 4.

Step 5: From now on we can assume that (5.22) is satisfied and

(5.23) 0 <ty <1,

If moreover Y-[0,6t+r°(y)] "4 cl(Nz\No), then F is continuous at ((y],o0).

*
PROOF: There is a t' ¢ 6t + TO(Y) such that Yt @ cl(N,\Nj). Hence there is a

®
' neighborhood W of (Y,0) in N, x [0,1) such that, whenever (y',c') € W, then
o' * o . 1
Y'e(0,2¢t] C NZ\N1, 0 ¢ T (Y') <1, t <6t + 1T (Y'), and Y'st € cl(Nz\No). Hence :
T ' a
e Py = (N, x 0] for all (Y',0') € W.
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Step 6: If (5.22) and (5.23) are satisfied and if ye10,6t+1%(Y)] ¢ Nz\NO. then F is
continuous at ([Y],q).

PROOF: First note that, by Step 2, T1(y) < 3t + (1-0)T + 1 < 4t + 1 and therefore
v+(6t+1%(Y)) @ N, (recall that t > 1). Now let U be a neighborhood of Y (6t+1%(Y))
in T. Moreover, choose a neighborhood V of Y‘(Gt*TG(Y)) in T and an € > 0 such

that

ve(-€,e] C U, Y*[0,6t+1°(Y)+E] C NN

(1% rr-e, 1% (yr+e) C (0,1) .

Then there exists a neighborhcod W of (y,0) in Ny x [0,1], such that, whenever
(Y',0') e w, then

Y'e10,2¢] C N\W yre[o,6t+1%(y)+e] C LAUA

1I

g

19 (v = )] <€, yro(etst(y)) e v .

1] i ]
Then we get Y'+[0,2t] C N,\N,, 0 < % vy <1, yrego,et+1? (v C N,\Ng  and

H 1]
yreet+1? (y')) e U, J1® (v - t%(y)} < € for all (Y',0') € W and hence
(+]

FO v = tyteeest® (v 1), 1-1% (v @ (v 0 x [1-1%(y)-e, 1=ty ) 4] .

This proves Step 6.

o o
Step 7: If (5.22) and (5.23) are satisfied and if Y°*[0,6t+1 (Y)] C cl(Nz\No), R
Y'(6t+T°(Y)) € Ny, then F is continuous at ([v],0). ®

PROOF: Note that Fo([YI) = [No X 0] and choose a neighborhood [U] of [Ng] in - R

Ny/Ng. Then

U= ((u} foNg\Ng) U NG U (TN 1
-48- S
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is a neighborhood of Nj in I' and satisfies

(v} = (u M N,\NG) U [Ng) -

Now chooge a neighborhocod V of Ng in I' and an € > 0 such that Ve(-€,e] C U. Then
there exists a nieghborhood W of (Y,9) in Ny X {0,1] such that whenever

(y',0') € w, then 4

PP

L]
.,':—l y'e[0,2t]} C NZ\N.', 0 <t®(y <1,
L]

%) - 9 (v <, Yroeert’tyn e v .
. . ]
Hence we obtain Y'°[(0,2t] C Nz\N1, 0 < To (') < 1, Y"(6t+T° (vy')) € U and therefore ]
» 4
o' g o' 1

FO tytt) e {ty eet+t? ('), 1=t (Y}, (N, x 0}}
0 R
C (w r.n1\uo) x [0,1] U [Ny x 0] b
«
3

= (U} = [0,1]

o for all (Y',0') € W.

';n This proves Theorem 5.7. I “f':
= 4
R

»
e N
IR
) ]
. 1
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6. CONTINUATION

The aim of this section is to establish the invariance of the Conley index for
isolated invariant sets under (small) perturbations of the flow. For this purpose we
first collect some elementary properties of parametrized flows and, in particular, make
precise what we mean by continuation of isolated invariant sets {(compare CONLEY [3,

Chapter IV.1]).

6.1. PARAMFTRIZED FLOWS
Throughout this section we shall assume that A is a compact, locally contractible,
connected, metric space and X is a locally compact metric space. Furthermore, we assume
that I is a flowand X x AC T is a local flow with the property that if
(x,A)*t € X x A, then (x,A)*t € X x A for all x e X, A e A, t € R. Then, of course

X x ACT is a local flow for every A € A. We will always denote by

oo X x A +x, ﬂA:xxA+A

the canonical projection maps.

LEMMA 6.1

For any compact set N C X the set

A(N) = {A @ A|N x XA is an isolating neighborhood in X x A}

is open _in A. S

.y

PROOF: Suppose that there is a A € A, a sequence Xk @ A converging to A and a
compact set N C X such that N x A is an isolating neighborhood in X x A but N x Ak
is not an isolating neighborhood in X X A . Then there exists a sequence

k

X, @ N [ cl(X\N) such that (x ,A)*RC N x A for all k € N. Any limit point
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x € N [ cl(X\N) of x| satisfies (x,A)})*RC N x A contradicting the fact that N x )

is an isolating neighborhood in X x A. |

Let us now introduce the set

Aok oto

S =1{s xAlxeA SCX compact, S x A is an

isolated invariant set in X x A}

of isolated invariant sets in X X A, For every compact set N C X let us define the map

9y ¢ ANy + S, dN(X) = I(N x ) .

Then we consider on the space S the topology which is generated by the sets
(oN(U)IN C X compact, U C A(N) open} .

Note that S is not necessarily Hausdorff as the following example shows.

Figure 4
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LFMMA 6.2

Let N,8 be compact subsets of X and let U C A(N) and U C AN) be open. Then

the following statements hold.

(i) Am,§) = {A e A) © AMII(N x X) = 1(N x M)} is open in A.
(ii) o (V) f1a_(T) = o (U fi T (i AN,

N

(iii) oy An) » S is continuous.

PROOF: (i) let XA @ A(N) fi A(N) such that I(N x A) = I(N x A) and suppose that there
exists a segquence Ak converging to A with Ak e A(N) [, A(N) and
I(N x '\k) §f I(N x Ak). Let x, € X such that (xk,Ak) e I(N x Xk)\I(N x Ak). Let
t, € R such that (xk,kk)w:k #N x Ak' et y € X be chosen such that (y,A) is a
limit point of (xk,kk)-tk. Then (y,A)*RC N X A and hence (y,A)*RC N x A gince

I(N x A) = I{N x A). But since (x, A ), E N x \ . we have y eN fi cl(x\N)
contradicting X € A(N),.

(ii) follows from the definitions.

(iii) If W C X is compact and U C A(N) open, then

o=V o (B = T n AW,
L

is open in A. 11

The previous lemma shows that the canonical projection map

is a local homeomorphism, If S x A @ S and N x A is an isolating neighborhood for

S x A in X x A, then the map

-52=-




oy ¢ A(N) + S

is an inverse of the restriction of LIW S + A to the neighborhood cN(A(N)) of S8 x A

in S.

REMARK 6.3

let 0 : A+S be a continuous map with ", oa0= 1A and let N C X be a compact

S set. Then the set

AN,0) = o~ (o (A(N))) .
N 3

{x e M) |o(h) = I(N x A)} g

{x € A|lN x A is an isolating neighborhood for o(X) in X x 1}

is open in A,

ddod )

Whenever N C X x A and K C A are compact sets we define

N(K) = N X x X ,

If N is an isolating neighborhood for the isolated invariant set S in X x A then

N(K) is an isolating neighborhcod for S(K) in X x K,

LEMMA 6.4 S

(i) Let the function o : A + S satisfy n,90=1, Then 0 is continuous if )

and only if
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(6.1) s= U a(x)
pY-T -
’
is an isolated invariant set in X x A,
(ii) let o0 : A +S and Tt : A +S be continuous functions with LT\ 0g = ‘A and -
LA O T= 11\' Then the function o it : A *+ S which gsends A e A into o(A) (. T(rA) e S _-
) ) >
is continuous.
s (iii) Let 0 : A+*S and a : A *S be continuous functions such that
[ L 4
: LF o g = 1A and a{A) is an attractor in O()A). Furthermore, let a (A) denote the
i: complementary repeller of a(lA) in o(A) and let S C X x A be defined by (6.1). Then b

*
a : A>S is continuous and the sets

*
(6.2) A= U ah), A = U a0
Aeh AeA L

{V‘vv‘v
L

form an attractor-repeller pair in S.

PRPOOF: (i) Let us first assume that S is an isolated invariant set, let N be an

isolating neighborhood for S in X x A and let N, x Xo be an isolating neighborhood ! """ -

for G(Ag) in X x A, such that Ng x A, C (X x M\cl((x x A)\N). Then there exists a

compact neighborhood Kgy of Ao in A such that Ng x Kg C N and K4 C A(No). ;:;
Furthermore we can choose X, small enough such that S(Kg) C Ng X Ky since otherwise e,
there would exist a seguence (xk,xk) € S such that Xk converges to Xo and

x, € x\N0 which would imply that (xo,ko) e a(xo) llcl(x\No x Ao) for any limit point ..
xy of x,. We conclude that Ny x A is an isolating neighborhood for ¢(iA) in X x A

whenever ) € Kg and hence 0(}) = ONO(X) for all A e Kp» Wow the continuity follows ]
from Lemma 6.2 (ijii).

Conversely suppose that o : A + S is a continuous function with LT\ 0 g = 1A. Then

there exists an isolating neighborhood N(A) x A for o(A} in X x A for every A € A. e

Furthermore, it follows from Remark 6.3 that the set i
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AN(AY,0) = (e A(A)) [o(p) = T(N(A)Y x )}

is open in A for every A € A and hence there exists an open neighborhood U(A) of A
in A such that N(X) x y is an isolating neighborhood for o(y) in X x u whenever
p € cl(U(A)). Since A is compact, there exists a finite subcover U(A1),...,U(An) of

A. Now define the set

N={(x,u) exxAlpe U(Aj) ===> x € N(Aj)} .

n
Then N is a closed subset of U N(Aj) x A and therefore N is compact. Moreover, if
=1
(x,u) € s, then
u= UA) 1 n AU(A )
Heu(i,) J MEEL (VX)) 2
is a neighborhood of u in A,
W= n N(A.)

uecl(U(Xj))

is a neighborhood of x in X and W x U C N. Therefore N is a neighborhood of §
in X x A. Finally, S = I{N) since (x,u)*RCN and u & U(Aj) imply that
(x,u)*R C N(Xj) x y and thus (x,u) € o(u).
(ii) Choose compact sets Ngy L X and N, C X such that N, x AO and N, x Xo are
isolating neighborhoods for o(ko) and T(Ao), respectively, in X x Ao. By Remark 6.3,
there exists a compact neighborhood K; of A in A such that

0
Ko L A(N1,0) M A(NZ,T). Hence N4 (|N2 x A 1is an isolating neighborhood for

o(X) fit(A) in X x X whenever \ € X,. This implies that o i T(A) = %9 N (A) for
12

every A € Ky and thus the continuity follows from Lemma 6.2.
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(iii) Choose compact sets N4y C N

«
‘
“«
K
«
«
.

2 & X such that N, x XO and Ny x Xo are
isolating neighborhoods for u(ko) and o(Xo), respectively, in X x Xo. By Remark 6.3,
there exists a compact neighborhood K, of Ao in A such that

Kg C A(N1,a) fi A(Nz,a). Then it follows from Lemma 3.2 (vi) that N' x A= cl(Nz\N1) x A

*
is an isolating neighborhood for & (A) in X X A whenever X € Ky. Hence

E
a (X)) =0 ,(A) for A e Ky and therefore the continuity follows again from Lemma 6.2.
N
Furthermore it follows from (i) that A and A' as defined by (6.2) are compact s

subsets of S with a Na" = #. Hence there exists a neighborhood U of A in 8§ such

* Y .

that cl(u) i A" = 6. If (x,A\)*(=»,0) C U then (x,A) € 0(A) and w (x,A) fia (A) = & - ‘

1

and therefore (x,A) € a(l) C A (Lemma 3.2). By Lemma 3.1, this implies that A is an ) f

; attractor in S. It follows again from Lemma 3.2 that its complementary repeller is given K
by :

3 .1

» .

- . v
& A" = U o (h) = {(x,A) e slwx,A) [ A =g} . (1 SR
k. AeA oo
R

In some situations it might be useful to consider general maps t : A + S such that !—5-5

"0t & * A is not necessarily injective. This can be reformulated within the

framework of this section by considering X X A as a local flow in A x A where

(x,£) € X x A is identified with the triple (x,lA o 1(g),E) e x x AxaCT xaA.

Introducing the space e

Sy=(sxAxElces, sxres, A=n, 018} S

endowed with an analogous topology as S, it is then easy to see that the map

Ty: A SA defined by TA(E) = 1{f) x § for &£ € A is continuous.
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At the end of this section we point out that some (global) phenomena cannot be

described within the framework of product flows X x A. An example for such a situation

i‘ T T ""vf..‘ -

is the flow on a Moebius strip which is illustrated in the diagram below and involves a

et e

change of orientation in the space X.

b
b
b
b
L

AP

4
o

Figure 5

In such cases it might be useful to consider a local flow on a (locally trivial) fibration

instead of the product space X x A, This could be a problem for future investigations.

6.2. LOCAL CONTINUATION

In this section we are going to prove a local continuation theorem for the Conley
index of isolated invariant sets. The result has been formulated in CONLEY (3] but the

proof is only roughly sketched. A complete but rather complicated proof can be found in

KURLAND [8). We present a simplified proof which is based on the results in section 4.2.
Throughout this section we will adopt the notation of section 6.1 and assume in
addition that o : A * S is a continuous map with LI o9 = 'A and that the isolated

invariant set S in X x A is defined by (6.1). Note that for any index pair (Ny,Ng)

for S in X x A and for any compact set K C A the gets (N4 (K),Ng(X)) form an index 1";L

pair for the isolated invariant set S(K) in X x K. }f}‘

The local continuation theorem now consists of two parts. The first and easy part is f}fi

to show that for any index pair (N4,Ng) for S in X x A the canonical injection map N
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J(A) N1(A)/N°(X) + Ny/Ng induces a morphism between the corresponding connected simple
systems which is independent of the choice of the index pair (Proposition 6.5). The main
part is then to show that this morphism is in fact a local isomorphism (Theorem 6.7).
These facts will then be used to obtain a continuation result for the coexact sequence of

section 5 which is associated with an attractor-repeller pair in S (section 6.4).

PROPOSITION 6.5

Let (Ny,Ng) be an index pair for § in X x A. Then the canonical injection map

I{o(A),X x A) and I(S,X x A) which is independent of the choice of the index pair.

JLA) N1(A)/N°(X) * Ny/Ng induces a morphism between the connected simple systems ;" y
)
b
E

PROOF: Let '(§1,§0) be another index pair for S in X x A, choogse T > 0 such that

M 1 o
-
_

(x,w)* [-T,T} C N,\No =2=> (x,u) € ﬁi\ﬁo ,

s (x,u)* [-T,T) C N1\N0 ===> (x,U) € N1\No .

. t . - - t .5 &
and define the maps f£f(})" : N,(A)/NO(A) i N1(A)/No(l) and g~ : N/N, * Ny/Ny by !;':4

P
[

ot
A

. [(x,A)*3t), (x,A)*[0,2t) C N1\N0, (x,A)*[t,3¢t]) C i1\§0 , .
e ) = { L
[No(l)l. otherwise, (x,A) € N‘(X) ’ i

. [l u)e3t], Oxu)e[0,26) € NG, Oupe[e,38) C NN,
g [x,u) = - T
[Ng), otherwise, (x,u) € N1 . R

. R

:

for t > T. Then the composed map gt o j(r) o f(A)t : N1(A)/NO(A) * Ny/Ng is given by _1




- [(x,2)e6t), (x,))*(0,6t] C N.\N
gt 0 FO)Y o £ tx) = 1o o
[Ng), otherwise, )

for (x,}) € N,()) and hence is homotopic to the injection j(}) : N1(\)/N0(X) + N4/Nge |

The next Lemma provides the crucial step in proving that the injection map J

3OV 2 NUIMNG(Y) + Ny/Ng  is (locally) a homotopy equivalence.

LEMMA 6.6 - J
t Let (N4,Np) be an index pair for S in X x A and let X, € A be given. Then ' )
: there exists a compact neighborhood K of 10 in M and times Ty > 2T > 0 such that
i( the following stztements hold.
(i) N x K 3is an isolating neighborhood of S§(K) and U x K is a neighborhood of . 1

' S(K) in X x K where the sets N CX and U C X are defined by

= \ =
(6.3) N = cl(m (N (K)\Ng (X)) ﬂx(cl(N1(K)\N0(K))) ,
(6.4) U=int P "x‘"1“’\“o“’) rel X .

rex

(ii) For all x €X and u,l €K and T > 7T; the following implications hold

(6.5) (x,u)'[-'ro,'rol CNxXxK===>x€eU

(m, ((x,w)e 0,11 ,2) C cl(N1(K)\N0(K)) '
(6.6) (x,u)-['x'o,'r) 7 U x K

=== ("x((x,u)°T),l)'[0,T] f Ny £o .




PROOF: 1In order to prove statement (i) let us choose isolating neighborhoods N and N
for S in X x A such that N1\N0 is a neighborhood of N in X x A and N is a
neighborhood of c1(N1\N°) in X x A (Lemma 3.7). By Remark 6.3, there exists a compact
neighborhood X of A in A such that X L-A(ﬂx(ﬁ(lo)),d) an(ﬂx(ﬁ(Ao)),o). This

implies that
nx(ﬁ(xo)) x K, ux(N(Ao)) x K

are isolating neighborhoods for S(K) in X x K. Furthermore we can choose K small

enough such that

(6.7) T AN(A)) x K CNANG

(6.8) nx(u1(x)\uo(x)) C nx(u(xo)) VieK .

The first inclusion is obvious since ﬁ(xo) is contained in the interior of N1\No
relative X x A, If (6.8) would not hold for any neighborhood K of AO’ then there
would exist a sequence (xk,Ak) € N1\N° such that Ak tends to Ao and (xk,xo) # N.
But then any limit point xo of x, would satisfy (x,,A;) € cl(N,\N,), and

(xo,Xo) e cl((Xx x M)\N), contradicting the fact that N is a neighborhood of

cl(N1\N0) in X x A, From (6.7) and (6.8) we conclude that

TR(A)) Com (N (W) Cry (N(AG))

for all X € X. This proves statement (i). >
In order to prove statement (ii), let us choose the compact neighborhood X of Xo

in A as in (i). Then it follows from Lemma 4.6 that (6.5) holds for some Ty > 0.

Furthermore note that once (6.6) is satisfied for some T = Ty > 2T0, then it holds for

all T » Ty since the first condition in (6.6) together with (6.5) guarantees that
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(x,u)'['ro,T—'l‘o] C U x ¥. Now suppose that (6.6) does not hold for any
n . T =Ty > 0 and any neighborhood of )0 in A, Then there would exist sequences x € X, - 4
Xk € K, i € X, T, > 2T, ty € [Ty,T] such that T, tends to infinity, Xk and u,

e tend to ) and :

:- (6.9) (M C0x, 0, )0 10,7, 10,0, ) € el(N, ()\N (X)), N
; {6.10) (xu e UK, i
g (6.11) (m (ke W 1T, ) 3, )0 [0,y ] € Ny \Ng 3
S
It follows from (6.9) and (6.5) that (x,,u )+ [To,T,~Tg] C U x K and therefore L
tx ¥ Tx~Tp. Now let x5 € N be a limit point of wx((xk,uk)-'rk) and let t > 0 be a 5 :
limit point of Ty = t,. Then it follows from (6.9) and (6.11) that :
(%52g)*R C cl(N,\Ny) and hence (xq,1) € S. But it follows from (6.10) that . 3
(xo,lo)°(-1’) 2 U x K contradicting the fact that S(K) C U x K. (1 7 ‘

THFOREM 6.7

Let (N,,Ng) be an index pair for § in X x A, let Xo € A pe given and let X

be a compact, contractible neighborhood of )0 in A which satisfies the conditions of

Lemma 6.6 for T, > 2Tg > 0. Then the injection map

i) = jx(l) : N,(\)/No(l) + Ry(K)/Np(X)

is a homotopy equivalence for every X € K and the map

’ £(2) = fk(\) : N1(K)/N0(K) * N.‘(‘)/NO(X) defined by ‘
: b
L". .' :
t
.3
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[ir CUx,u)e3T),3)T), if (x,n)e[0,2T) C’N1\uo '

(r (x,ude (T,371),0) € upuo ,
(6.12) fK(x)(x,u] =
( C(x,u)*3T) 3 )+ [0,T] C N1\No P

[ND(X)], otherwise ,

for (x,u) e N,(K) is a homotopy inverse of j(}).

PROOF: First note that the composed map f£(}) © j(X) : N1(X)/N0()) > N1(\)/No()) is
given hy
[(x,2)+47], 3if (x,))+(0,4T] C u,\n

£(2) o 3O )(x,}] = °

(NO(\)], otherwise ,

for (x,)) e N1(\) and it follows from Lemma 4.7 that this map is homotopic to the

identity. In order to show that 3j(}) 0 f£(})) is also homotopic to the identity we make
use of the fact that K is contractible which means that there exists a function

| r : K x {0,1] + K such that

(6.13) r(u,0) = u, r{u,1) =X V¥vpex,

Now we define the map F : N (K)/Ng(K) x [0,1] + Ny (K)/Ng(K} by

[y ((x,u)*3T),r(u,F))eT], if (x,u)e[0,2T] C w1\no .
(m COxu) e [, 37],x(u,F)) € N1\N0 .
F([x,u],r) =

(% ((x,u)*3T),r(u,F))e(0,T) C N1\N0 .

[NO(Y)], otherwige ,

for (x,u) € N;(¥) and f e (0,1]. Then it follows from (6.13) and (6.12) that
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F(e,1) = j(}) o £()) and that F(+,0) : N1(K)/N0(K) + N,(K)/Ng(K) is given by

[(x,1)*4T), if (x,u)*(0,4T7) C N1\N0 ,
F({x,u),0) =

Ng(K)?, otherwise ,

for (x,u) € ¥ (K) and therefore is homotopic to the identity (Lemma 4.7). It remains to
show that F 1is continuous.
In the following cases the continuity can be obtained by standard arguments as in the

proof of Lemma 4.7 or Theorem 5.7 (iii).

-

. (x,u)*[0,27] ¢ cl(N1(K)\N0(K)) P

2. (m Ux)e(T,3T]),r(0,F)) @ cl(N1(K)\N0(K)) ,
3. (M ((x,u)*3T), c(u,F))e (0,71 ¢ cl(N1(K)\N0(K)) .
4. (my(lx,u)*3T),r(u,f))eT € Ny .

Therefore we can assume from now on that

(6.14) (x,u)*[(0,2T) C’cl(N1(K)\N0(K)) ,
(6.15) ("x((x,u)'[T,JT]),r(u,’)) c cl(N1(K)\N0(K)) ’
(6.16) (7 ((x,u)*3T),r(u,“))=[0,T] C N1\N0 .

Now lemma 6.7 comes in. First of all, since T > 2T0 it follows from (6.14) and (6.5)
that (x,u)'[T,T+T0) CUxXK where UC X is defined by (6.4). Secondly, it follows
from (6.15), (6.16) and (6.6) that (x,u)*[T+T0,3T] C U x X. Finally, it follows from
(6.15) and (6.5) that (x,u)*2T # No. Therefore the conditions (6.14) and (6.15) can be

replaced by

(6.17) (x,u)* (0,27 C NNy
(6.18) (x,u)efT,37] C U XK.
-6~
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But the conditions (6.16), (6.17) and (6.18) together are stahle with respect to small

variations in (x,u) € N,(K) and £ € [0,1]. This proves the continuity of F. ||l

since A is a connected space, we obtain as an immediate consequence of Theorem 6.7
that the homotopy index h(o(A)) of the isolated invariant set o(A) in X x A |is
independent of A. In fact, it depends only on the path-component of 0d(A) in S (Lemma
6.4 together with Theorem 6.7). Furthermore, combining Theorem 6.7 with Proposition 6.5,
we obtain that there is locally a unique isomorphism between the connected simple systems

I(o(A),X x A) and I(o(u),X x u). If A is connected thean such an isomorphism exists
for any two A,u € A. However, we will see in the next section that globally this

isomorphism need no longer be unique.

6.3. GLOBAL CONTINUATION

We first point out that the global isolated invariant set S in X x A may have a
much richer structure than the isolated invariant set o©(A) in a single fiber X x A.

This is illustrated by the following example

Figure 6

in which the flowon [ = X x A = Rx g' is given by (x,A)*t = (xe®,\) for x € R and

A es'. Then the homotopy index of O{(A) = (0,X) 1is h(o(A}) = ' pue

2

h(s) = L Vv 21. Hence the global injection J(A) : N,(X)/NO(X) + Ny/N, cannot be a

homotopy equivalence in this case. However, if A is a contractible space, one might
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expect that this global injection is indeed a homotopy equivalence. We leave this as an B

open problem.

In order to obtain an isomorphism between any two connected simple systems

I{o(}),Xx x ) and I(o(u),X ¥ u) it is useful toc rephrase the statement of Theorem 6.7 ; t-.

as follows.

COROLLARY 6.8

w Let (N4,N3) be an index pair for S in X x A and let KC* be a compact, B
contractible set which satisfies the conditions of Lemma 6.6 for T4 > 2Ty > 0. For %
‘€K and T >Ty let themap F(},u) = F(d,u) : N(u)/Ny(u) + NJ(A/NG(A) be o

{ defined by

’

® 1
g ' 4
Cm (x, ) #3T), 2)eT], i (x,u)e[0,2T) C N1\N0 . :
(my (e, u)e (7,300 ,0) C NN, ]
(6.19) FK(X,u)Ix,u] = 1
(r (Ux,u)*3T), ) (0,T} C u1\u0 . 1
[NO(X)], otherwige , .

for (x,u) € N,(u). Then for all 1Y,u,v € K

~ 4
(6.20) FK(),u) o FK(u,v) FK(X,V) . 1

(6.21) FK(\,l) ~ 1. -

In particular, FK(l,u) is a homotopy equivalence with homotopy inverse FK(u,X).

Furthermore, if (ﬁ,,ﬁo) is another index pair for S 4in X x A with respect to

which K satisfies the conditions of Lemma 6.6 and if

FK(N,u) : ﬁ1(u)/§0(u) - ﬁ1(1)/§0(l) is defined analogously to (6.19), then the maps

I A 1)
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EK(X,H) and FK(X,u) induce the same isomorphism between the connected simple systems

I(a(u),X x u) and I(O0(A),X x A).
PROOF: With the notation of Theorem 6.7 we have FK(A,u) = fK(X) ] jK(u). Therefore
(6.20) and (6.21) follow from the fact that fK(X) o jK(A) and jx(x) o fK(X) are
homotopic to the respective identity maps for every A € K. The remainder of the

Corollary is a consequence of Proposition 6.5. 1

If A is a compact, connected space we can connect any two pints p @ A and X e A
by a finite sequence of compact sets K each of which satisfies the conditions of Lemma
6.6. BAny such sequence induces an isomorphism between the connected simple systems

I(o{u),X x u) and I(o(A),X x A). This motivates the introduction of the following
subcategory of the category of pointed spaces and homotopy classes of maps associated with
a continuous function o : A +§ satisfying L\ og = 1A‘ This category may be

considered as the global Conley index of o0 in X x A and is defined by

(6.22; 1) 1(0,X,A) = (Io,Ip)

where

I, = {N1(A)/N0(A)|X e A and Ny(X),Ng(X) is an index

(6.22;2)
pair for o(X) in X x A} ,
In = {IE)IN (/Mg (X) € 1), N (ui/Nj(u) € I, and
(6.22;3) f : N1(u)/N0(u) > N1(A)/NO(X) is a finite composition

of maps defined in Lemma 4.7 and Corollary 6.8} .

The global Conley index I(o,X,A) of o in X x A has to be well distinguished from the

Conley index 1I(S,X x A) of the global isolated invariant set S in X x A, If A s
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connected, then the category 1I(¢,X,A) has the property that there is at least one

morphism between any two objects and that every morphism is an equivalence. However, )
I(o,X,A) is in general not a connected simple system since there may be different

isomorphisms between the same objects. This is the case in the parametrized flow

illustrated in the diagram below.

Figqure 7

However, if A is simply connected (every closed arc is homotopic to a constant where the
end points are fixed), then we will show that 1I(og,X,A) is a connected simple system.
This result has first been stated in terms of the cohomology of the isolated invariant
sets and is due to MONTGOMERY [9]. The corresponding theorem in CONLEY (3] has been

phrased in terms of continuation along arcs.

THEOREM 6.9

Suppose that A is gimply connected and let o0 : A + S be a continuous map with

LI 0 g = 1A' Then I(0,X,A) is a connected simple system.
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PROOF: We have to prove that every morpbism in I with the same domain and range is in

m

the class of the identity map. Using the second part of Corollary 6.8 one can first show
that every map f : N,(A)/NO(A) * N1(A)/N0(X) with [f] € I, 1is homotopic to a finite
composition of maps defined by (6.19) and associated with a single index pair (N4,Ng)
for S8 in X x A. Hence we can assume that there are finitely many compact contractible

sets Kg,...,K in A satisfying the conditions of Lemma 6.6 and points Aj ] Kj_1 { Kj,

J = lyeeesks A, = A

0 K+t = A e Ky i K such that

f = Fk(x Ak) o F, (A ,A ) O sec 0O FO(A1,A0)

k+1’ k=1""k’' k=1

where the maps Pj = Fg. ore defined by (6.19). Let us extend {Ko,...,Kk} to a
J

collection of compact, contractible sets Kg,...,K, which satisfy the conditions of Lemma

6.6 for T 2 T4y > 2Tg > 0 and are chosen such that the sets int Kj = A\cl(A\Kj) cover

A. Using (6.20) we can assume without loss of generality that Aj e int Kj_1 [, int xj

for j = 1,...,k and AO € int Ky i int X,. Since the sets Ky are contractible, there
k

(0,11 » U int K5 such that 61(0) = 01(1) = XO and
j=0

Aj = a1(£j), a1([£j'£j+1]) C int Kj for 3 =0,...,X. Now we make use of the fact that

A is simply connected and conclude that there exists a continuous family of arcs

exists an arc a,

at : (0,1 * A, 0 € £ € 1, such that ut(O) = at(1) = Xo for all t e [0,1)] and

00(5) H Ao. With every arc a_ we can associate a sequence of maps

. Fy(g)guroiy)e

= 1,

j=0,...,%, defined by (6.19) and such that uj = at(Cj), 0= Co < C1 < oo ( C!+1

and at([cj,§j+1]) C int K = 0,.0.,8. Let f, : N1(X)/N0(X) > N1(X)/N0(X) denote

vi’ J
the composition of these maps. Then it follows from (6.20) that the homotopy class of
ft is independent of the choice of the points ;j and the indices Vv(j). This fact

together with the continuous dependence of the condition at([cj,cj+1]) C int Kv(j) on

t shows that (f,] 1is independent of t e [0,1]. Finally, it follows from (6.20) and

(6.21) that fg is homotopic to the identity on N, (A)/MN, (}). iy
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6.4. CONTINUATION OF ATTRACTOR-REPELLER PAIRS
It is the purpose of this section to combine the continuation results of section -~

6.1-3 with the coexact sequence of section 5 associated with an attractor-repeller pair.

o In addition to the notation and assumptions of section 6.1 we will assume throughout -
_ this section that o : A + S and a: A+ S are continuous maps such that ,‘
}

1 LYY o0 = 11\ and a(A) is an attractor in ¢o(A). Then the complementary repeller

*
a (A) of a(l) in o()) also defines a continuous function from A into S and the

sets A, A" Qefined by (6.2) form an attractor-repeller pair for the isolated invariant

gset S defined by (6.1) in X x A (Lemma 6.4).

Now let N4 C N, C Ny be a filtration of compact sets in X x A such that

}. (Np,Ng) and (Ny,Ng) are index pairs for S and A, regpectively, and (N,,N4) is a
regular index pair for A.. Furthermore, let 1 : N1/N° + Ny/Ng and % : NZNO + Np/Ny
be the natural maps and let the connection map § : NZ/N1 * m1/N° be defined by (5.9)

and (5.6), For any A € A 1let the corresponding maps be denoted by

HA)Y ¢ N O/RG(R) > NN R, ®3G 1 Ny (AN A+ By (/N (A),

§(A) : NZ(X)/N1(X) + XN1(X)/N°(A). Then the following diagram commutes K

Ny/Ng — Np/Ng  —— Na /Ny . In /N, Tl
LR |
(6.23) 1 itk 3 t kO Ry S

i(d) () S(A)
N1(X)/N0(X) — Nz(K)/No(X) —_— NZ(“/N‘I(M — IN1(X)/N°(M

where i(A), j{A) and k()) are the natural inclusion maps. It follows from Theorem 5.7
and Proposition 6.5 that all the maps in diagram (6.23) induce morphisms of the
corresponding connected simple systems which are independent of the choice of the index

filtration Ny C N, C Ny« Therefore we obtain the following commuting diagram of

connected simple systems in which the rows are coexact.
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T(A(K)) — 1(S(K)) — T(A*(K)) —3b EZI(A(X)) —> oo»

(6.24) r ita) T JA) T k(A) T Li(}X)

T(a(r)) n, I1(a(A)) g, I(a.(k)) S, LI(a(A)) —> eeo .

Here we have replaced A by any compact subset K C A. If this set is contractible and
satisfies the requirements of Lemma 6.6 for each of the index pairs (N,,NO), (NZ'NO)'
(N;,Ny), then it follows from Theorem 6.7 that the vertical maps in diagram (6.24) are
equivalences for every A € K. The homotopy inverses of these equivalences define, of
course, again morphisms between the respective connected simple systems and make the
(vertically reverse) diagram commute. This implies that for any two points A, y in the

same cc<~nected component of A and any connecting sequence of compact contractible sets

K; C A which satisfy the conditions of Lemma 6.6 there is a (unique) commuting diagram of

J
the form

ttatm) Y90 1o T80 1oty SO priatu)) — eee
(6.2%) 1 F(A,u) l G(A,n) l H(A, 1) 1 EF(A,u)

*
I(a(A)) lill» I(G(A)) lillo I{a (X)) Eill» LI(Q(A)) ~r eoo

where the vertical morphisms are equivalences. Finally, it follows from Theorem 6.9 that
the vertical morphisms in (6.25) are independent of the choice of the connecting sequence
Ky if A is simply connected. This proves the following result (compare KURLAND (8]).
THEOREM 6.10

If A is simply connected, then the maps 11(X) : I(a(X)) + I(a(r)),

- *
m(A) : I{a(A)) * T(a (X)), 8(X) : I(a (X)) + LI(a(A)) of section 5 induce the following

coexact sequence of connected simple gystems

§

*
v 100, X, A) —2— I(a ,X,A) —>— EI(a,X,A) — sos

(6.26) I(a,X,A)
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7. CONCLUSIONS

In this paper we have given complete proofs for most of the basic abstract results in
the index theory of isolated invariant sets. Of course, there are many questions left
open.

One of them is to develop a continuation theorem for flows on fibrations rather than
product spaces X x A. Another problem is the relation between the global Conley index

1(0,X,A) and the Conley index 1I(S,X x A) of the global isolated invariant set
S = U o(A) in the parametrized flow X % A. For example, there is the question whether
el
I(u,i,A) is isomorphic to I(S,X x A) if A is simply connected.

Several other questions have been indicated by CONLEY (3]. Among these there is the
obgservation that information gets lost by collapsing the exit set Ny in the index pair
(Ny,Ng). This leads to the question whether a sequence of index pairs which collaps to
S gives more information which can be used in a nice way for the definition of algebraic
invariants. Another possible refinement of the Conley index might be to consider only
special classes of homotopies since all the maps and homotopies in the theory are given by
flow induced maps.

Furthermore, there is a duality in homotopy theory between fibrations {mapping
fibration, loop functor, exact sequence) and cofibrations (mapping cone, suspension
functor, coexact sequence). A very nice presentation of these duality relations can be
found in WHITEHEAD (13]. Since index pairs only give rise to a coexact sequence there
arises the question whether there is some kind of a dual concept.

Of course, there is a big area of open questions when it comes to the point of
applying the index theory to obtain results for concrete differential equations. Despite
the fact that the Conley index has proven to be a very useful tool for many problems,
there is the question under which conditions infinite dimensional systems can be
formulated in the framework of section 3. For some cases this has been done, e.q. by
SMOLLER {11). 1If this is not possible then there arises the question what one can do if

X is not locally compact and T is only a semiflow. Some steps in this direction have
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been taken by RYBAKOWSKI-ZEHNDER [10]). Another possibility might be to go to finite
dimensional approximations (see for example CONLEY-ZEHNDER [4]).

We stop at this place since the list of open questions has no end.

ACKNOWLEDGEMENT
The author wishes to thank Professor C. C. Conley for many helpful discussions and

for his encouragement to write this paper.

.

S R

AR N LRI g




Py v:IBIA*,

(1}

2}

13}

(4)

(5}

{6}

(7

(8]

{9]

(10}

(11}

(12]

[13})

REFERENCES
N. P. BHATIA/G. P. SZEGS, Stability Theory of Dynamical Systems, Springer, Berlin
197¢0.
G. D. BIRKHOFF, Dynamical Systems, AMS Colloq. Publ., vol. IX, Amer. Math. Soc., New
York 1927.
C. C. CONLEY, Isolated Invariant Sets and the Morse Index, AMS Reg. Conf. Ser.
Math., vol. 38, Amer. Math. Soc., Providence, R.I. 1976.
C. C. CONLEY/R. ZEHNDER, Morse type index theory for flows and periodic solutions
for Hamiltonian systems, Mathematics Research Center, University of Wisconsin-
Madison, TSK #2567, 1983.
R. FRANZOSA, Ph.D. Thesis, University of Wisconsin-Madison, 1984.
H. L. KURLAND, The Morse index of an isolated invariant set is a connected simple
system, J. Diff. Equations 42 (1981}, 234-259.
H. L. KURLAND, Homotopy invariants of repeller-attractor pairs. I. The Pfippe
sequence of an R-A pair, J. Diff. Equations.
H. L. KURLAND, Homotopy invariants of repeller-attractor pairs. II. Continuation of
an R-A pair, J. Diff. Equations.
J. T. MONTGOMERY, Cohomology of isolated invariant sets under perturbation, J. Diff.
Equations 13 (1973), 257-299.
K. P. RYBAKOWSKI/E. ZEHNDER, A Morse equation in Conley's index theory for semiflows
on metric spaces, Institut fur Mathematik, Ruhr Universitdt Bochum, 1982,
J. A. SMOLLFR, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New
York 1983.
E. H. SPANIER, Algebraic Topology, Springer-Verlag, New York 1966.

G. W. WHITEHEAD, Elements of Homotopy Theory, Springer-Verlag, New York 1978.

DS:scr

-73-

]




WY

A AREae

T ey —— g

SECURITY CLASSIFICATION OF THi» PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETnG FORM

T REPORT NUMBER 2. GOVT AC?;SSION NO.| 3. R%;ENT'S CATALOG NUMBER
2753 ATD-A| Cf AN

4. TITLE (and Subtitle)

CONNECTED SIMPLE SYSTEMS AND THE CONLEY

INDEX OF ISOLATED INVARIANT SETS reporting period

8. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Dietmar Salamon
DAAG29-80-C-0041
MCS-8210950
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giR‘AIWAOERLKESE:‘Tt PRMOBJEE'S;. TASK
Mathematics Research Center, University of ork Unit Numbe "”1
610 Walnut Street Wisconsin °rAppﬁed ﬂal;sis
Madison, Wisconsin 53706
14, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
September 1984
See Item 18 below. 13. NUMBER OF PAGES
73
. MONITORING AGENCY NAME & ADDRESS(If ditferent from Controlling Office) 18. SECURITY CLASS. (of thia reporst)
UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park

North Carolina 27709

19. KEY WORDS (Continue on reverse side if neceasary and identify by block number)
Index theory for isolated invariant sets in flows
Attractor-repeller pairs

Coexact sequence

Continuation

20. ABSTRACT (Continue on reverse side {f necessary and identity by dlock number)
The Conley index is an extremely useful tool for the study of structural

flow which are described by the Conley index are among those which are

invariant under perturbations. This is a fact of great interest in many

properties of isolated invariant sets such as critical points or periodic solu-

tions in local flows. The continuation theorem shows that the properties of the

applications,
DD , 5%, 1473 eoimion oF 1 oV 6815 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

. -
N
i {
R
]
o]
) 1
"
]
-——
'
]
P
T
o
]
]
1
D
N

.....



20. ABSTRACT - cont'd.

e
|
» -
)

)
i'
!

'

i

i

»

)

V-
-

Most of the results in the present paper are not new. The object of this
work is to give a self-contained presentation of most of the basic concepts and
theorems in the index theory for flows which can otherwise only be found in a

number of different papers. Moreover, we have simplified a number of the

camplicated proofs.
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